論文の概要: Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
- arxiv url: http://arxiv.org/abs/2401.13627v2
- Date: Wed, 3 Apr 2024 08:12:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 22:17:46.264512
- Title: Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
- Title(参考訳): 優れたものへのスケーリング:野生のフォトリアリスティック画像復元のためのモデルスケーリングの実践
- Authors: Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong,
- Abstract要約: SUPIR (Scaling-UP Image Restoration) は、生成前処理とモデルスケールアップのパワーを利用する、画期的な画像復元手法である。
モデルトレーニングのための2000万の高解像度高画質画像からなるデータセットを収集し、それぞれに記述的テキストアノテーションを付加する。
- 参考スコア(独自算出の注目度): 57.06779516541574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative prior, SUPIR marks a significant advance in intelligent and realistic image restoration. As a pivotal catalyst within SUPIR, model scaling dramatically enhances its capabilities and demonstrates new potential for image restoration. We collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations. SUPIR provides the capability to restore images guided by textual prompts, broadening its application scope and potential. Moreover, we introduce negative-quality prompts to further improve perceptual quality. We also develop a restoration-guided sampling method to suppress the fidelity issue encountered in generative-based restoration. Experiments demonstrate SUPIR's exceptional restoration effects and its novel capacity to manipulate restoration through textual prompts.
- Abstract(参考訳): 本稿では,生成前処理とモデルスケールアップのパワーを活かした画期的な画像復元手法であるSUPIR(Scaling-UP Image Restoration)を紹介する。
SUPIRはマルチモーダル技術と先進的な生成技術を応用し、インテリジェントで現実的な画像復元において大きな進歩を遂げた。
SUPIR内の重要な触媒として、モデルスケーリングはその能力を劇的に向上させ、画像復元の新しい可能性を示す。
モデルトレーニングのための2000万の高解像度高画質画像からなるデータセットを収集し、それぞれに記述的テキストアノテーションを付加する。
SUPIRは、テキストプロンプトでガイドされたイメージを復元する機能を提供し、アプリケーションの範囲と可能性を広げる。
さらに、知覚品質をさらに改善するために、ネガティブ品質プロンプトを導入します。
また, 再生型修復における忠実度問題を抑制するために, 修復誘導サンプリング法を開発した。
実験では、SUPIRの異常な修復効果と、テキストのプロンプトによって復元を操作する新しい能力を示す。
関連論文リスト
- Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model [55.46927355649013]
本稿では,新しいマルチモーダル・リアル・ワールド・フェイス・リカバリ技術を紹介する。
MGFRは偽の顔の特徴とアイデンティティの生成を緩和することができる。
5000のアイデンティティにまたがる23,000以上の高解像度の顔画像からなるReface-HQデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-05T13:46:56Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
既存の統合手法は、マルチタスク学習問題として、多重劣化画像復元を扱う。
本稿では,複数のローランクアダプタ(LoRA)をベースとした汎用画像復元フレームワークを提案する。
本フレームワークは, 学習前の生成モデルを多段劣化復元のための共有コンポーネントとして利用し, 特定の劣化画像復元タスクに転送する。
論文 参考訳(メタデータ) (2024-09-30T11:16:56Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
本稿では,人間の手書きによる画像復元モデルを導出する手法を提案する。
InstructIRという手法は、いくつかの修復作業において最先端の結果を得る。
論文 参考訳(メタデータ) (2024-01-29T18:53:33Z) - Improving Image Restoration through Removing Degradations in Textual
Representations [60.79045963573341]
劣化画像のテキスト表現の劣化を除去し,画像復元を改善するための新たな視点を導入する。
クロスモーダル支援に対処するため,劣化した画像をテキスト表現にマッピングし,劣化を除去する手法を提案する。
特に、画像からテキストへのマッパーとテキスト復元モジュールをCLIP対応のテキストから画像へのモデルに組み込んで、ガイダンスを生成する。
論文 参考訳(メタデータ) (2023-12-28T19:18:17Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - Towards Authentic Face Restoration with Iterative Diffusion Models and
Beyond [30.114913184727]
我々は$textbfIDM$, $textbfI$teratively learned face restoration systemを$textbfD$iffusionに基づいて提案する。
ブラインドフェイス修復作業における優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-18T06:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。