LAA-Net: Localized Artifact Attention Network for Quality-Agnostic and Generalizable Deepfake Detection
- URL: http://arxiv.org/abs/2401.13856v2
- Date: Fri, 24 May 2024 14:12:59 GMT
- Title: LAA-Net: Localized Artifact Attention Network for Quality-Agnostic and Generalizable Deepfake Detection
- Authors: Dat Nguyen, Nesryne Mejri, Inder Pal Singh, Polina Kuleshova, Marcella Astrid, Anis Kacem, Enjie Ghorbel, Djamila Aouada,
- Abstract summary: This paper introduces a novel approach for high-quality deepfake detection called Localized Artifact Attention Network (LAA-Net)
Existing methods for high-quality deepfake detection are mainly based on a supervised binary classifier coupled with an implicit attention mechanism.
Experiments performed on several benchmarks show the superiority of our approach in terms of Area Under the Curve (AUC) and Average Precision (AP)
- Score: 12.567069964305265
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach for high-quality deepfake detection called Localized Artifact Attention Network (LAA-Net). Existing methods for high-quality deepfake detection are mainly based on a supervised binary classifier coupled with an implicit attention mechanism. As a result, they do not generalize well to unseen manipulations. To handle this issue, two main contributions are made. First, an explicit attention mechanism within a multi-task learning framework is proposed. By combining heatmap-based and self-consistency attention strategies, LAA-Net is forced to focus on a few small artifact-prone vulnerable regions. Second, an Enhanced Feature Pyramid Network (E-FPN) is proposed as a simple and effective mechanism for spreading discriminative low-level features into the final feature output, with the advantage of limiting redundancy. Experiments performed on several benchmarks show the superiority of our approach in terms of Area Under the Curve (AUC) and Average Precision (AP). The code is available at https://github.com/10Ring/LAA-Net.
Related papers
- PETDet: Proposal Enhancement for Two-Stage Fine-Grained Object Detection [26.843891792018447]
We present PETDet (Proposal Enhancement for Two-stage fine-grained object detection) to better handle the sub-tasks in two-stage FGOD methods.
An anchor-free Quality Oriented Proposal Network (QOPN) is proposed with dynamic label assignment and attention-based decomposition.
A novel Adaptive Recognition Loss (ARL) offers guidance for the R-CNN head to focus on high-quality proposals.
arXiv Detail & Related papers (2023-12-16T18:04:56Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - TOPIQ: A Top-down Approach from Semantics to Distortions for Image
Quality Assessment [53.72721476803585]
Image Quality Assessment (IQA) is a fundamental task in computer vision that has witnessed remarkable progress with deep neural networks.
We propose a top-down approach that uses high-level semantics to guide the IQA network to focus on semantically important local distortion regions.
A key component of our approach is the proposed cross-scale attention mechanism, which calculates attention maps for lower level features.
arXiv Detail & Related papers (2023-08-06T09:08:37Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection [0.9883261192383611]
We propose a novel Gated Context Attention Network (GCA-Net) that utilizes the non-local attention block for global context learning.
We show that our method outperforms state-of-the-art networks by an average of 4.2%-5.4% AUC on multiple benchmark datasets.
arXiv Detail & Related papers (2021-12-08T14:13:14Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Boundary-assisted Region Proposal Networks for Nucleus Segmentation [89.69059532088129]
Machine learning models cannot perform well because of large amount of crowded nuclei.
We devise a Boundary-assisted Region Proposal Network (BRP-Net) that achieves robust instance-level nucleus segmentation.
arXiv Detail & Related papers (2020-06-04T08:26:38Z) - A novel Region of Interest Extraction Layer for Instance Segmentation [3.5493798890908104]
This paper is motivated by the need to overcome the limitations of existing RoI extractors.
The proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance.
GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks.
arXiv Detail & Related papers (2020-04-28T17:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.