CPDR: Towards Highly-Efficient Salient Object Detection via Crossed Post-decoder Refinement
- URL: http://arxiv.org/abs/2501.06441v1
- Date: Sat, 11 Jan 2025 05:41:05 GMT
- Title: CPDR: Towards Highly-Efficient Salient Object Detection via Crossed Post-decoder Refinement
- Authors: Yijie Li, Hewei Wang, Aggelos Katsaggelos,
- Abstract summary: We introduce the Attention Down Sample Fusion (ADF), which employs channel attention mechanisms with attention maps generated by high-level representation to refine the low-level features.
We also proposed the Dual Attention Cross Fusion (DACF) upon ADFs and AUFs, which reduces the number of parameters while maintaining the performance.
Experiments on five benchmark datasets demonstrate that our method outperforms previous state-of-the-art approaches.
- Score: 3.5321836333805425
- License:
- Abstract: Most of the current salient object detection approaches use deeper networks with large backbones to produce more accurate predictions, which results in a significant increase in computational complexity. A great number of network designs follow the pure UNet and Feature Pyramid Network (FPN) architecture which has limited feature extraction and aggregation ability which motivated us to design a lightweight post-decoder refinement module, the crossed post-decoder refinement (CPDR) to enhance the feature representation of a standard FPN or U-Net framework. Specifically, we introduce the Attention Down Sample Fusion (ADF), which employs channel attention mechanisms with attention maps generated by high-level representation to refine the low-level features, and Attention Up Sample Fusion (AUF), leveraging the low-level information to guide the high-level features through spatial attention. Additionally, we proposed the Dual Attention Cross Fusion (DACF) upon ADFs and AUFs, which reduces the number of parameters while maintaining the performance. Experiments on five benchmark datasets demonstrate that our method outperforms previous state-of-the-art approaches.
Related papers
- Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target.
We propose a multi-scale direction-aware network (MSDA-Net) to integrate the high-frequency directional features of infrared small targets.
MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
arXiv Detail & Related papers (2024-06-04T07:23:09Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
We propose a novel structure and training strategy for monocular depth estimation.
We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder.
Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2.
arXiv Detail & Related papers (2022-01-19T06:37:21Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
We introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image.
Experiments demonstrate that EDN achieves sArt performance with real-time speed.
arXiv Detail & Related papers (2020-12-24T04:23:48Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
arXiv Detail & Related papers (2020-12-15T19:33:09Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.