Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?
- URL: http://arxiv.org/abs/2401.13875v2
- Date: Mon, 24 Jun 2024 04:45:30 GMT
- Title: Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?
- Authors: Huy Nguyen, Pedram Akbarian, Nhat Ho,
- Abstract summary: We explore the impacts of a dense-to-sparse gating mixture of experts (MoE) on the maximum likelihood estimation under the MoE.
We propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function.
- Score: 27.924615931679757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as $\mathcal{O}(1/\log(n))$, where $n$ denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates. Finally, we conduct a simulation study to empirically validate our theoretical results.
Related papers
- Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts [78.3687645289918]
We show that the sigmoid gating function enjoys a higher sample efficiency than the softmax gating for the statistical task of expert estimation.
We find that experts formulated as feed-forward networks with commonly used activation such as ReLU and GELU enjoy faster convergence rates under the sigmoid gating.
arXiv Detail & Related papers (2024-05-22T21:12:34Z) - On the Asymptotic Mean Square Error Optimality of Diffusion Models [10.72484143420088]
Diffusion models (DMs) as generative priors have recently shown great potential for denoising tasks.
This paper proposes a novel denoising strategy inspired by the structure of the MSE-optimal conditional mean (CME)
The resulting DM-based denoiser can be conveniently employed using a pre-trained DM, being particularly fast by truncating reverse diffusion steps.
arXiv Detail & Related papers (2024-03-05T13:25:44Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts [28.13187489224953]
We propose a novel class of modified softmax gating functions which transform the input before delivering them to the gating functions.
As a result, the previous interaction disappears and the parameter estimation rates are significantly improved.
arXiv Detail & Related papers (2023-10-22T05:32:19Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
We propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum learning likelihood of energy-based models.
PS-CD avoids the intractable partition function and provides a generalized family of learning objectives.
arXiv Detail & Related papers (2021-11-01T09:17:15Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Non-asymptotic oracle inequalities for the Lasso in high-dimensional mixture of experts [2.794896499906838]
We consider the class of softmax-gated Gaussian MoE (SGMoE) models with softmax gating functions and Gaussian experts.
To the best of our knowledge, we are the first to investigate the $l_1$-regularization properties of SGMoE models from a non-asymptotic perspective.
We provide a lower bound on the regularization parameter of the Lasso penalty that ensures non-asymptotic theoretical control of the Kullback--Leibler loss of the Lasso estimator for SGMoE models.
arXiv Detail & Related papers (2020-09-22T15:23:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.