Convergence Rates for Softmax Gating Mixture of Experts
- URL: http://arxiv.org/abs/2503.03213v1
- Date: Wed, 05 Mar 2025 06:11:24 GMT
- Title: Convergence Rates for Softmax Gating Mixture of Experts
- Authors: Huy Nguyen, Nhat Ho, Alessandro Rinaldo,
- Abstract summary: Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.<n>Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.<n>We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
- Score: 78.3687645289918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture of experts (MoE) has recently emerged as an effective framework to advance the efficiency and scalability of machine learning models by softly dividing complex tasks among multiple specialized sub-models termed experts. Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights. Despite its widespread use in practice, a comprehensive study on the effects of the softmax gating on the MoE has been lacking in the literature. To bridge this gap in this paper, we perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating, respectively. Furthermore, our theories also provide useful insights into the design of sample-efficient expert structures. In particular, we demonstrate that it requires polynomially many data points to estimate experts satisfying our proposed \emph{strong identifiability} condition, namely a commonly used two-layer feed-forward network. In stark contrast, estimating linear experts, which violate the strong identifiability condition, necessitates exponentially many data points as a result of intrinsic parameter interactions expressed in the language of partial differential equations. All the theoretical results are substantiated with a rigorous guarantee.
Related papers
- Domain-Specific Pruning of Large Mixture-of-Experts Models with Few-shot Demonstrations [48.890534958441016]
We investigate domain specialization and expert redundancy in large-scale MoE models.
We propose a simple yet effective pruning framework, EASY-EP, to identify and retain only the most relevant experts.
Our method can achieve comparable performances and $2.99times$ throughput under the same memory budget with full DeepSeek-R1 with only half the experts.
arXiv Detail & Related papers (2025-04-09T11:34:06Z) - On Expert Estimation in Hierarchical Mixture of Experts: Beyond Softmax Gating Functions [29.130355774088205]
Hierarchical Mixture of Experts (HMoE) excels in handling complex inputs and improving performance on targeted tasks.
Our analysis highlights the advantages of using the Laplace gating function over the traditional Softmax gating within the HMoE frameworks.
Empirical validation across diverse scenarios supports these theoretical claims.
arXiv Detail & Related papers (2024-10-03T19:28:52Z) - Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts [78.3687645289918]
We show that the sigmoid gating function enjoys a higher sample efficiency than the softmax gating for the statistical task of expert estimation.
We find that experts formulated as feed-forward networks with commonly used activation such as ReLU and GELU enjoy faster convergence rates under the sigmoid gating.
arXiv Detail & Related papers (2024-05-22T21:12:34Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE) computation amalgamates predictions from several specialized sub-models (referred to as experts)
Sparse MoE selectively engages only a limited number, or even just one expert, significantly reducing overhead while empirically preserving, and sometimes even enhancing, performance.
arXiv Detail & Related papers (2024-03-26T05:48:02Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Statistical Perspective of Top-K Sparse Softmax Gating Mixture of
Experts [28.907764868329988]
We study the effects of the top-K sparse softmax gating function on both density and parameter estimations.
Our results hinge upon defining novel loss functions among parameters to capture different behaviors of the input regions.
Our findings suggest that the number of experts selected from the top-K sparse softmax gating function must exceed the total cardinality of a certain number of Voronoi cells.
arXiv Detail & Related papers (2023-09-25T03:28:01Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.