論文の概要: Dynamic embedded topic models and change-point detection for exploring
literary-historical hypotheses
- arxiv url: http://arxiv.org/abs/2401.13905v1
- Date: Thu, 25 Jan 2024 02:50:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 16:00:14.084524
- Title: Dynamic embedded topic models and change-point detection for exploring
literary-historical hypotheses
- Title(参考訳): 動的組込み話題モデルと変化点検出による文学史的仮説の探索
- Authors: Hale Sirin, Tom Lippincott
- Abstract要約: 本稿では,古典ラテン語と初期のキリスト教ラテン語における語彙的意味モダリティのダイアクロニックな変化を探索するために,動的組込み話題モデルと変化点検出の新たな組み合わせを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel combination of dynamic embedded topic models and
change-point detection to explore diachronic change of lexical semantic
modality in classical and early Christian Latin. We demonstrate several methods
for finding and characterizing patterns in the output, and relating them to
traditional scholarship in Comparative Literature and Classics. This simple
approach to unsupervised models of semantic change can be applied to any
suitable corpus, and we conclude with future directions and refinements aiming
to allow noisier, less-curated materials to meet that threshold.
- Abstract(参考訳): 古典ラテン語と初期キリスト教ラテン語における語彙的意味的モダリティの2次変化を探索するために,動的埋め込みトピックモデルと変化点検出の新たな組み合わせを提案する。
結果のパターンを検索し,特徴付けするためのいくつかの手法を実証し,比較文学・古典における従来の奨学金と関連付ける。
意味変化の教師なしモデルに対するこの単純なアプローチは,任意の適切なコーパスに適用可能である。
関連論文リスト
- Historia Magistra Vitae: Dynamic Topic Modeling of Roman Literature using Neural Embeddings [10.095706051685665]
従来の統計モデル(LDAとNMF)とBERTモデルを用いたトピックモデルの比較を行った。
定量的メトリクスは統計モデルを好むが、定性的評価は神経モデルからより良い洞察を得る。
論文 参考訳(メタデータ) (2024-06-27T05:38:49Z) - Enhanced Short Text Modeling: Leveraging Large Language Models for Topic Refinement [7.6115889231452964]
トピックリファインメント(Topic Refinement)と呼ばれる新しいアプローチを導入する。
このアプローチは、トピックの初期のモデリングに直接関係せず、採掘後にトピックを改善することに重点を置いています。
素早いエンジニアリングを駆使して、所与のトピック内での話題外単語を排除し、文脈的に関係のある単語だけが、よりセマンティックに適合した単語で保存または置換されることを保証する。
論文 参考訳(メタデータ) (2024-03-26T13:50:34Z) - Neural Unsupervised Reconstruction of Protolanguage Word Forms [34.66200889614538]
古語形態の教師なし再構成に対する最先端のニューラルアプローチを提案する。
我々はこの研究を、より複雑な音韻学的および形態学的変化を捉えることができるニューラルモデルで拡張する。
論文 参考訳(メタデータ) (2022-11-16T05:38:51Z) - Are Neural Topic Models Broken? [81.15470302729638]
トピックモデルの自動評価と人的評価の関係について検討する。
ニューラルトピックモデルは、確立された古典的手法と比較して、両方の点においてより悪くなる。
論文 参考訳(メタデータ) (2022-10-28T14:38:50Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Unsupervised Lexical Substitution with Decontextualised Embeddings [48.00929769805882]
事前学習された言語モデルを用いた語彙置換の新しい教師なし手法を提案する。
本手法は,文脈的および非文脈的単語埋め込みの類似性に基づいて代用語を検索する。
我々は、英語とイタリア語で実験を行い、我々の手法が強いベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-09-17T03:51:47Z) - Contextualized language models for semantic change detection: lessons
learned [4.436724861363513]
本稿では,ダイアクロニック・セマンティック・チェンジを検出する文脈的埋め込みに基づく手法の出力の質的分析を行う。
本研究の結果から,文脈化手法は,実際のダイアクロニック・セマンティック・シフトを行なわない単語に対して,高い変化スコアを予測できることが示唆された。
我々の結論は、事前学習された文脈化言語モデルは、語彙感覚の変化と文脈分散の変化を補う傾向にあるということである。
論文 参考訳(メタデータ) (2022-08-31T23:35:24Z) - Lexical semantic change for Ancient Greek and Latin [61.69697586178796]
歴史的文脈における単語の正しい意味の連想は、ダイアクロニック研究の中心的な課題である。
我々は、動的ベイズ混合モデルに基づくセマンティック変化に対する最近の計算的アプローチに基づいて構築する。
本研究では,動的ベイズ混合モデルと最先端埋め込みモデルとのセマンティックな変化を系統的に比較する。
論文 参考訳(メタデータ) (2021-01-22T12:04:08Z) - A Comparative Study of Lexical Substitution Approaches based on Neural
Language Models [117.96628873753123]
本稿では,一般的なニューラル言語とマスキング言語モデルの大規模比較研究について述べる。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによって達成された既に競合する結果をさらに改善できることを示す。
論文 参考訳(メタデータ) (2020-05-29T18:43:22Z) - Analysing Lexical Semantic Change with Contextualised Word
Representations [7.071298726856781]
本稿では,BERTニューラルネットワークモデルを用いて単語使用率の表現を求める手法を提案する。
我々は新しい評価データセットを作成し、モデル表現と検出された意味変化が人間の判断と正に相関していることを示す。
論文 参考訳(メタデータ) (2020-04-29T12:18:14Z) - FLAT: Few-Shot Learning via Autoencoding Transformation Regularizers [67.46036826589467]
本稿では,データ例のラベルを使わずに,変換の分布によって引き起こされる特徴表現の変化を学習することで,新たな正規化機構を提案する。
エンコードされた特徴レベルで変換強化されたバリエーションを検査することで、ベースカテゴリへのオーバーフィットのリスクを最小限に抑えることができる。
実験結果から,文学における現在の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2019-12-29T15:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。