LocMoE: A Low-Overhead MoE for Large Language Model Training
- URL: http://arxiv.org/abs/2401.13920v3
- Date: Thu, 23 May 2024 10:03:35 GMT
- Title: LocMoE: A Low-Overhead MoE for Large Language Model Training
- Authors: Jing Li, Zhijie Sun, Xuan He, Li Zeng, Yi Lin, Entong Li, Binfan Zheng, Rongqian Zhao, Xin Chen,
- Abstract summary: We propose a novel routing strategy that combines load balance and locality by converting partial inter-node communication to that of intra-node.
The proposed LocMoE reduces training time per epoch by 12.68% to 22.24% compared to classical routers.
- Score: 13.153904674287546
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Mixtures-of-Experts (MoE) model is a widespread distributed and integrated learning method for large language models (LLM), which is favored due to its ability to sparsify and expand models efficiently. However, the performance of MoE is limited by load imbalance and high latency of All-to-All communication, along with relatively redundant computation owing to large expert capacity. Load imbalance may result from existing routing policies that consistently tend to select certain experts. The frequent inter-node communication in the All-to-All procedure also significantly prolongs the training time. To alleviate the above performance problems, we propose a novel routing strategy that combines load balance and locality by converting partial inter-node communication to that of intra-node. Notably, we elucidate that there is a minimum threshold for expert capacity, calculated through the maximal angular deviation between the gating weights of the experts and the assigned tokens. We port these modifications on the PanGu-Sigma model based on the MindSpore framework with multi-level routing and conduct experiments on Ascend clusters. The experiment results demonstrate that the proposed LocMoE reduces training time per epoch by 12.68% to 22.24% compared to classical routers, such as hash router and switch router, without impacting the model accuracy.
Related papers
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer.
We propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging.
We show that WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
arXiv Detail & Related papers (2024-10-29T07:16:31Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router [55.88046193872355]
Mixture-of-Experts (MoE) architectures face challenges such as high memory consumption and redundancy in experts.
We propose MoE-Pruner, a method that prunes weights with the smallest magnitudes multiplied by the corresponding input activations and router weights.
Our pruning method is one-shot, requiring no retraining or weight updates.
arXiv Detail & Related papers (2024-10-15T19:22:27Z) - Ada-K Routing: Boosting the Efficiency of MoE-based LLMs [6.954735360168147]
We propose a novel Ada-K routing strategy that dynamically adjusts the number of activated experts for each token.
Our strategy incorporates learnable and lightweight allocator modules that decide customized expert resource allocation tailored to the contextual needs for each token.
arXiv Detail & Related papers (2024-10-14T12:50:04Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - Exploiting Inter-Layer Expert Affinity for Accelerating
Mixture-of-Experts Model Inference [3.217776693788795]
We propose a lightweight optimization technique called ExFlow to largely accelerate the inference of pre-trained MoE models.
By exploiting the inter-layer expert affinity, our solution can be directly applied to pre-trained MoE models without any fine-tuning or accuracy degradation.
Our solution beats the cutting-edge MoE implementations with experts from 8 to 64, with up to 2.2x improvement in inference throughput.
arXiv Detail & Related papers (2024-01-16T14:16:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - SMILE: Scaling Mixture-of-Experts with Efficient Bi-level Routing [47.11171833082974]
We introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing.
Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed.
arXiv Detail & Related papers (2022-12-10T03:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.