論文の概要: Improving Pseudo-labelling and Enhancing Robustness for Semi-Supervised Domain Generalization
- arxiv url: http://arxiv.org/abs/2401.13965v2
- Date: Tue, 24 Sep 2024 19:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 05:17:11.953626
- Title: Improving Pseudo-labelling and Enhancing Robustness for Semi-Supervised Domain Generalization
- Title(参考訳): 半スーパービジョン領域一般化のための擬似ラベリングの改善とロバスト性向上
- Authors: Adnan Khan, Mai A. Shaaban, Muhammad Haris Khan,
- Abstract要約: 自動化医療のような現実のアプリケーションに不可欠な半スーパービジョン・ドメイン・ジェネリゼーションの問題について検討する。
モデル平均化を用いた新しい不確実性誘導擬似ラベリングを用いたSSDG手法を提案する。
我々の不確実性誘導型擬似ラベリング(UPL)は、モデル不確実性を利用して擬似ラベリング選択を改善する。
- 参考スコア(独自算出の注目度): 7.9776163947539755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Beyond attaining domain generalization (DG), visual recognition models should also be data-efficient during learning by leveraging limited labels. We study the problem of Semi-Supervised Domain Generalization (SSDG) which is crucial for real-world applications like automated healthcare. SSDG requires learning a cross-domain generalizable model when the given training data is only partially labelled. Empirical investigations reveal that the DG methods tend to underperform in SSDG settings, likely because they are unable to exploit the unlabelled data. Semi-supervised learning (SSL) shows improved but still inferior results compared to fully-supervised learning. A key challenge, faced by the best-performing SSL-based SSDG methods, is selecting accurate pseudo-labels under multiple domain shifts and reducing overfitting to source domains under limited labels. In this work, we propose new SSDG approach, which utilizes a novel uncertainty-guided pseudo-labelling with model averaging (UPLM). Our uncertainty-guided pseudo-labelling (UPL) uses model uncertainty to improve pseudo-labelling selection, addressing poor model calibration under multi-source unlabelled data. The UPL technique, enhanced by our novel model averaging (MA) strategy, mitigates overfitting to source domains with limited labels. Extensive experiments on key representative DG datasets suggest that our method demonstrates effectiveness against existing methods. Our code and chosen labelled data seeds are available on GitHub: https://github.com/Adnan-Khan7/UPLM
- Abstract(参考訳): ドメイン一般化(DG)の達成以外にも、限られたラベルを活用することにより、学習中に視覚認識モデルはデータ効率も向上するべきである。
本稿では,医療自動化のような現実のアプリケーションにとって重要な,半スーパービジョンドメイン一般化(SSDG)の問題について検討する。
SSDGは、与えられたトレーニングデータが部分的にラベル付けされているだけで、クロスドメインの一般化可能なモデルを学ぶ必要がある。
実証的な調査により、DG法はSSDGの設定において性能が劣る傾向にあることが明らかになった。
半教師付き学習(SSL)は、完全な教師付き学習に比べて改善されているが、まだ劣っている。
SSLベースのSSDGメソッドが直面している重要な課題は、複数のドメインシフトの下で正確な擬似ラベルを選択し、制限されたラベルの下でのソースドメインへのオーバーフィットを減らすことである。
本研究では,モデル平均化(UPLM)を用いた新しい不確実性誘導擬似ラベリングを用いたSSDG手法を提案する。
我々の不確実性誘導型擬似ラベリング(UPL)は、モデル不確実性を利用して擬似ラベリング選択を改善する。
新しいモデル平均化(MA)戦略によって強化されたUPL技術は、限られたラベルを持つソースドメインへの過度な適合を緩和する。
主要なDGデータセットに対する大規模な実験により,本手法が既存手法に対する有効性を示すことが示唆された。
私たちのコードとラベル付きデータシードはGitHubで入手可能です。
関連論文リスト
- Domain-Guided Weight Modulation for Semi-Supervised Domain Generalization [11.392783918495404]
半教師付き領域一般化の課題について検討する。
目的は、ラベル付きデータのごく一部とラベルなしデータの比較的大きな部分だけを使用しながら、ドメイン一般化可能なモデルを学ぶことである。
そこで本研究では,様々なドメインシフトの下で,正確な擬似ラベルの生成を容易にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T01:26:23Z) - Towards Generalizing to Unseen Domains with Few Labels [7.002657345547741]
ラベル付きデータの限られたサブセットを活用することにより、ドメインの一般化可能な特徴を学習するモデルを得る。
ラベル付けされていないデータを活用できない既存のドメイン一般化(DG)手法は、半教師付き学習(SSL)法に比べて性能が劣る。
論文 参考訳(メタデータ) (2024-03-18T11:21:52Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Domain-Irrelevant Representation Learning for Unsupervised Domain
Generalization [22.980607134596077]
ドメインの一般化(Domain Generalization, DG)は、ソースドメインの集合で訓練されたモデルが、見えないターゲットドメインでより良く一般化することを支援することを目的としている。
ラベルのないデータははるかにアクセスしやすいが、教師なし学習がドメイン間の深いモデルの一般化にどのように役立つかを探究する。
本研究では,未ラベルデータ内の不均一性に対処するために,ドメイン関連無教師学習(DIUL)手法を提案する。
論文 参考訳(メタデータ) (2021-07-13T16:20:50Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
実世界のアプリケーションでは、アノテーションのコストが高いため、各ソースドメインから利用可能なラベルはわずかです。
本研究では,より現実的で実践的な半教師付き領域一般化について検討する。
提案手法であるStyleMatchは,擬似ラベルに基づく最先端の半教師付き学習手法であるFixMatchに着想を得たものである。
論文 参考訳(メタデータ) (2021-06-01T16:00:08Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
半教師付きドメイン適応のための強化学習に基づく選択擬似ラベル法を提案する。
高精度かつ代表的な擬似ラベルインスタンスを選択するための深層Q-ラーニングモデルを開発する。
提案手法は, SSDAのベンチマークデータセットを用いて評価し, 全ての比較手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-07T03:37:38Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。