論文の概要: Cross-Domain Few-Shot Learning via Adaptive Transformer Networks
- arxiv url: http://arxiv.org/abs/2401.13987v1
- Date: Thu, 25 Jan 2024 07:05:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 15:35:43.110754
- Title: Cross-Domain Few-Shot Learning via Adaptive Transformer Networks
- Title(参考訳): アダプティブトランスフォーマーネットワークによるクロスドメイン・マイノショット学習
- Authors: Naeem Paeedeh, Mahardhika Pratama, Muhammad Anwar Ma'sum, Wolfgang
Mayer, Zehong Cao, Ryszard Kowlczyk
- Abstract要約: 本稿では,ドメイン間数ショット学習のための適応型トランスフォーマネットワーク(ADAPTER)を提案する。
ADAPTERは2つのドメイン間で伝達可能な特徴を学習するために双方向の相互注意というアイデアに基づいて構築されている。
- 参考スコア(独自算出の注目度): 16.289485655725013
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most few-shot learning works rely on the same domain assumption between the
base and the target tasks, hindering their practical applications. This paper
proposes an adaptive transformer network (ADAPTER), a simple but effective
solution for cross-domain few-shot learning where there exist large domain
shifts between the base task and the target task. ADAPTER is built upon the
idea of bidirectional cross-attention to learn transferable features between
the two domains. The proposed architecture is trained with DINO to produce
diverse, and less biased features to avoid the supervision collapse problem.
Furthermore, the label smoothing approach is proposed to improve the
consistency and reliability of the predictions by also considering the
predicted labels of the close samples in the embedding space. The performance
of ADAPTER is rigorously evaluated in the BSCD-FSL benchmarks in which it
outperforms prior arts with significant margins.
- Abstract(参考訳): ほとんど数ショットの学習作業は、ベースとターゲットタスクの間の同じドメイン仮定に依存しており、実践的な応用を妨げる。
本稿では,ベースタスクと対象タスクの間に大きな領域シフトが存在するクロスドメイン・少数ショット学習のための,単純かつ効果的なソリューションであるadaptive transformer network (adapter)を提案する。
ADAPTERは2つのドメイン間で伝達可能な特徴を学習するために双方向の相互注意という概念に基づいている。
提案されたアーキテクチャはdinoでトレーニングされ、監督崩壊問題を避けるために多様でバイアスの少ない特徴を生み出す。
さらに, 埋込空間における密接なサンプルのラベルの予測も考慮し, 予測の一貫性と信頼性を向上させるため, ラベル平滑化手法を提案する。
アダプタの性能はbscd-fslベンチマークで厳密に評価され、かなりのマージンで先行技術を上回る。
関連論文リスト
- Dual Adaptive Representation Alignment for Cross-domain Few-shot
Learning [58.837146720228226]
ベース知識から学習することで、限られたサポートサンプルを持つ新規なクエリを認識することを目的としている。
この設定の最近の進歩は、ベース知識と新しいクエリサンプルが同じドメインに分散されていることを前提としている。
本稿では,ターゲットドメインで利用可能なサンプルが極めて少ないドメイン間数ショット学習の問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-06-18T09:52:16Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
教師なしのドメイン適応オブジェクト検出は、リッチラベル付きデータで訓練された元のソースドメインから、ラベルなしデータで新しいターゲットドメインに適応することを目的としている。
近年、主流のアプローチは、敵対的学習を通じてこのタスクを実行するが、それでも2つの制限に悩まされている。
上記の課題に対処するために,JADF(Joint Adaptive Detection framework)を提案する。
論文 参考訳(メタデータ) (2021-09-19T00:27:08Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Dynamic Domain Adaptation for Efficient Inference [12.713628738434881]
ドメイン適応(DA)は、ラベル付きソースドメインからラベルなしターゲットドメインへの知識転送を可能にする。
以前のdaアプローチのほとんどは、適応能力を改善するために複雑で強力なディープニューラルネットワークを活用する。
低リソースシナリオにおいて効率的なターゲット推論を同時に実現できる動的ドメイン適応(DDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-26T08:53:16Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。