Lattice-induced wavefunction effects on trapped superfluids
- URL: http://arxiv.org/abs/2401.14004v3
- Date: Fri, 2 Aug 2024 07:23:55 GMT
- Title: Lattice-induced wavefunction effects on trapped superfluids
- Authors: Yeyang Zhang,
- Abstract summary: We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode.
Our discovery advances the connections between the modern band theory and quantum many-body physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wavefunction effects in uncorrelated systems are characterized by the Berry curvature and quantum metric. Beyond those, we propose gauge-independent tensors describing Bloch wavefunction effects on local interaction between correlated particles. We derive an effective hydrodynamic theory for ultracold bosons in optical lattices. Ground states and collective modes of superfluids in isotropic harmonic traps are solved for highly symmetric lattices. In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode and can be observed in experiments. We also give a tight-binding model of a bipartite square lattice with nontrivial wavefunction effects, where results are estimated with typical experimental parameters. Our discovery advances the connections between the modern band theory and quantum many-body physics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Tunneling in a Lorenz-like model for an active wave-particle entity [0.0]
Active wave-particle entities (WPEs) emerge as self-propelled oil droplets on the free surface of a vibrating oil bath.
We numerically explore a dynamical analog of tunneling by considering the setup of a one-dimensional WPE incident on an isolated Gaussian potential barrier.
Our work highlights that velocity fluctuations of the WPE at high memories that are rooted in non-equilibrium features of the Lorenz system, such as spiraling motion towards equilibrium points and transient chaos, give rise to - (i) sensitivity and unpredictability in barrier crossing.
arXiv Detail & Related papers (2024-08-25T08:09:32Z) - Dispersive shock waves in a one-dimensional droplet-bearing environment [7.370081795303041]
We demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment.
Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold.
A plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains.
arXiv Detail & Related papers (2024-04-03T18:39:57Z) - Dynamics of a solitonic vortex in an anisotropically trapped superfluid [0.0]
We analytically study the dynamics of a solitonic vortex (SV) in a superfluid confined in a non-axisymmetric harmonic trap.
The study provides a framework for analyzing the role of the trap anisotropy in the oscillation of SVs observed in recent experiments on atomic Bose and Fermi superfluids.
arXiv Detail & Related papers (2023-04-07T10:04:57Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Spontaneous Formation of Star-Shaped Surface Patterns in a Driven
Bose-Einstein Condensate [0.0]
Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole to heptagon modes, are parametrically excited by modulating the scattering length near the Feshbach resonance.
Our work opens a new pathway for generating higher-lying collective excitations with applications.
arXiv Detail & Related papers (2021-05-20T14:46:28Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Interferences between Bogoliubov excitations and their impact on the
evidence of superfluidity in a paraxial fluid of light [0.8336477625900557]
Paraxial fluids of light are an alternative platform to atomic Bose-Einstein condensates and superfluid liquids.
We show that interferences between the phonon excitations that would be a clear signature of the collective superfluid behaviour have not been observed to date.
Results are evidence of a key signature of light superfluidity and provide a novel characterization tool for quantum simulations with photons.
arXiv Detail & Related papers (2020-05-28T22:33:55Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.