Spontaneous Formation of Star-Shaped Surface Patterns in a Driven
Bose-Einstein Condensate
- URL: http://arxiv.org/abs/2105.09794v2
- Date: Fri, 23 Jul 2021 12:42:55 GMT
- Title: Spontaneous Formation of Star-Shaped Surface Patterns in a Driven
Bose-Einstein Condensate
- Authors: K. Kwon, K. Mukherjee, S. Huh, K. Kim, S. I. Mistakidis, D. K. Maity,
P. G. Kevrekidis, S. Majumder, P. Schmelcher, J.-y. Choi
- Abstract summary: Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole to heptagon modes, are parametrically excited by modulating the scattering length near the Feshbach resonance.
Our work opens a new pathway for generating higher-lying collective excitations with applications.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We observe experimentally the spontaneous formation of star-shaped surface
patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped
patterns with $l$-fold symmetry, ranging from quadrupole ($l=2$) to heptagon
modes ($l=7$), are parametrically excited by modulating the scattering length
near the Feshbach resonance. An effective Mathieu equation and Floquet analysis
are utilized, relating the instability conditions to the dispersion of the
surface modes in a trapped superfluid. Identifying the resonant frequencies of
the patterns, we precisely measure the dispersion relation of the collective
excitations. The oscillation amplitude of the surface excitations increases
exponentially during the modulation. We find that only the $l=6$ mode is
unstable due to its emergent coupling with the dipole motion of the cloud. Our
experimental results are in excellent agreement with the mean-field framework.
Our work opens a new pathway for generating higher-lying collective excitations
with applications, such as the probing of exotic properties of quantum fluids
and providing a generation mechanism of quantum turbulence.
Related papers
- Lattice-induced wavefunction effects on trapped superfluids [0.0]
We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode.
Our discovery advances the connections between the modern band theory and quantum many-body physics.
arXiv Detail & Related papers (2024-01-25T08:04:47Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi-Hubbard model [7.317437085639568]
We study the dynamical excitations of attractive Fermi-Hubbard model in a two-dimensional square optical lattice.
Two kinds of collective modes are investigated, including a Goldstone phonon mode at transferred momentum.
arXiv Detail & Related papers (2023-05-15T06:57:44Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Parametrically excited star-shaped patterns at the interface of binary
Bose-Einstein condensates [0.0]
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis.
A heteronuclear system composed of $87$Rb-$85$Rb atoms can be used for the experimental realization of the phenomenon.
arXiv Detail & Related papers (2020-05-01T10:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.