論文の概要: CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
- arxiv url: http://arxiv.org/abs/2401.14109v2
- Date: Mon, 13 May 2024 10:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:33:27.681265
- Title: CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
- Title(参考訳): CompactifAI:量子インスパイアされたテンソルネットワークを用いた大規模言語モデルの極端圧縮
- Authors: Andrei Tomut, Saeed S. Jahromi, Abhijoy Sarkar, Uygar Kurt, Sukhbinder Singh, Faysal Ishtiaq, Cesar Muñoz, Prabdeep Singh Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David Montero, Pablo Martin-Ramiro, Muhammad Ibrahim, Oussama Tahiri Alaoui, John Malcolm, Samuel Mugel, Roman Orus,
- Abstract要約: 本稿では、量子インスパイアされたネットワークを用いた革新的な圧縮手法であるCompactifAIを紹介する。
我々の手法は万能であり、他の圧縮技術で実装することができる。
ベンチマークとして、CompactifAIと量子化の組み合わせにより、LlaMA 7Bの93%のメモリサイズを削減できることを示す。
- 参考スコア(独自算出の注目度): 1.5199992713356987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all.
- Abstract(参考訳): ChatGPTやLlaMAのような大規模言語モデル(LLM)は、生成的人工知能(AI)において急速に進歩している。
プルーニング、蒸留、低ランク近似といった従来の圧縮手法は、ネットワーク内のニューロンの有効数を減らし、量子化は個々の重みの数値的精度を減らし、ニューロンの固定数を抑えながらモデルサイズを減らすことに重点を置いている。
これらの圧縮法は実際は比較的成功したが、ニューロンの数を減らすことが最適な戦略であると考えるのは説得力のある理由ではない。
本稿では、量子インスパイアされたテンソルネットワークを用いた革新的なLCM圧縮手法であるCompactifAIを紹介し、モデルの相関空間に着目し、より制御され、洗練され、解釈可能なモデル圧縮を実現する。
我々の手法は万能であり、他の圧縮技術で実装することができる。
ベンチマークでは、量子化とCompactifAIの組み合わせによって、LlaMA 7Bのメモリサイズの93%を削減し、パラメータの70%を削減し、トレーニングの50%と推論時間の25%を加速し、精度が2%から3%の小さな低下で、今日の他の圧縮技術によって達成可能なものよりもはるかに上回っていることを示す。
また, より深い層がテンソルネットワーク圧縮に適する傾向を示し, それらの層がLLM性能に非効率であることを示す。
我々の結果は、標準LLMは実際には過度に過度にパラメータ化されており、大きすぎる必要はないことを示唆している。
関連論文リスト
- Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - "Lossless" Compression of Deep Neural Networks: A High-dimensional
Neural Tangent Kernel Approach [49.744093838327615]
広帯域かつ完全接続型エンフディープニューラルネットに対する新しい圧縮手法を提案する。
提案手法の利点を支えるために, 合成データと実世界のデータの両方の実験を行った。
論文 参考訳(メタデータ) (2024-03-01T03:46:28Z) - Just CHOP: Embarrassingly Simple LLM Compression [27.64461490974072]
LLM(Large Language Model)は、非並列の少数およびゼロショット推論機能を実現するが、高い計算フットプリントを実現する。
拡張言語モデル事前学習と組み合わせた単純なレイヤプルーニングは、7Bスケールでモデルの構造的および半構造化された圧縮に対して最先端の結果をもたらすことを示す。
また,より小さなBERT型モデルのタスク非依存圧縮において非常に効果的であった蒸留が,我々の単純な刈り取り技術に対して非効率になることを示す。
論文 参考訳(メタデータ) (2023-05-24T08:18:35Z) - A Theoretical Understanding of Neural Network Compression from Sparse
Linear Approximation [37.525277809849776]
モデル圧縮の目標は、同等のパフォーマンスを維持しながら、大きなニューラルネットワークのサイズを減らすことだ。
圧縮性を特徴付けるためにスペーサ感度$ell_q$-normを使用し、ネットワーク内の重みの柔らかいスペーサと圧縮度の関係を提供する。
また,ネットワーク上で各ニューロンを切断する適応アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-11T20:10:35Z) - OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization [32.60139548889592]
本稿では,新しいワンショットプルーニング量子化(OPQ)を提案する。
OPQは、事前訓練された重みパラメータのみによる圧縮割り当てを解析的に解決する。
本稿では,共通コードブックを共有するために各レイヤの全チャネルを強制する,統一的なチャネルワイド量子化手法を提案する。
論文 参考訳(メタデータ) (2022-05-23T09:05:25Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - A Model Compression Method with Matrix Product Operators for Speech
Enhancement [15.066942043773267]
本稿では,行列積演算子(MPO)に基づくモデル圧縮手法を提案する。
本稿では,特にクラウドフリーアプリケーションにおいて,音声強調のための効果的なモデル圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:53:25Z) - Compression strategies and space-conscious representations for deep
neural networks [0.3670422696827526]
近年のディープラーニングの進歩により、いくつかの実世界のアプリケーションで最先端のパフォーマンスを備えた強力な畳み込みニューラルネットワーク(CNN)が利用可能になった。
CNNには数百万のパラメータがあり、リソース制限のあるプラットフォームではデプロイできない。
本稿では,重み付けと量子化によるCNNの損失圧縮の影響について検討する。
論文 参考訳(メタデータ) (2020-07-15T19:41:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。