Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery
- URL: http://arxiv.org/abs/2401.14121v2
- Date: Wed, 30 Oct 2024 07:24:42 GMT
- Title: Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery
- Authors: Yongwei Nie, Mingxian Fan, Chengjiang Long, Qing Zhang, Jian Zhu, Xuemiao Xu,
- Abstract summary: We propose a dual-network architecture that unifies the training-time and test-time objectives.
Our method, armed with meta-learning and the dual networks, outperforms state-of-the-art regression-based and optimization-based HMR approaches.
- Score: 35.138312681232264
- License:
- Abstract: Human Mesh Recovery (HMR) is the task of estimating a parameterized 3D human mesh from an image. There is a kind of methods first training a regression model for this problem, then further optimizing the pretrained regression model for any specific sample individually at test time. However, the pretrained model may not provide an ideal optimization starting point for the test-time optimization. Inspired by meta-learning, we incorporate the test-time optimization into training, performing a step of test-time optimization for each sample in the training batch before really conducting the training optimization over all the training samples. In this way, we obtain a meta-model, the meta-parameter of which is friendly to the test-time optimization. At test time, after several test-time optimization steps starting from the meta-parameter, we obtain much higher HMR accuracy than the test-time optimization starting from the simply pretrained regression model. Furthermore, we find test-time HMR objectives are different from training-time objectives, which reduces the effectiveness of the learning of the meta-model. To solve this problem, we propose a dual-network architecture that unifies the training-time and test-time objectives. Our method, armed with meta-learning and the dual networks, outperforms state-of-the-art regression-based and optimization-based HMR approaches, as validated by the extensive experiments. The codes are available at https://github.com/fmx789/Meta-HMR.
Related papers
- FREE: Faster and Better Data-Free Meta-Learning [77.90126669914324]
Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data.
We introduce the Faster and Better Data-Free Meta-Learning framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks.
arXiv Detail & Related papers (2024-05-02T03:43:19Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [119.70303730341938]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.
ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.
We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Meta-Registration: Learning Test-Time Optimization for Single-Pair Image
Registration [0.37501702548174964]
This work formulates image registration as a meta-learning algorithm.
Experiments are presented in this paper using clinical transrectal ultrasound image data from 108 prostate cancer patients.
arXiv Detail & Related papers (2022-07-22T10:30:00Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time.
We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions.
Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
arXiv Detail & Related papers (2021-03-30T09:33:38Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
Neural networks (NNs) have been demonstrated to work well at the core of model-based optimization procedures.
We show that our trained regression models achieve a better predictive quality than several baselines.
arXiv Detail & Related papers (2020-09-29T07:32:30Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.