Meta-Registration: Learning Test-Time Optimization for Single-Pair Image
Registration
- URL: http://arxiv.org/abs/2207.10996v1
- Date: Fri, 22 Jul 2022 10:30:00 GMT
- Title: Meta-Registration: Learning Test-Time Optimization for Single-Pair Image
Registration
- Authors: Zachary MC Baum, Yipeng Hu, Dean C Barratt
- Abstract summary: This work formulates image registration as a meta-learning algorithm.
Experiments are presented in this paper using clinical transrectal ultrasound image data from 108 prostate cancer patients.
- Score: 0.37501702548174964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have been proposed for medical image registration by
learning, with a substantial amount of training data, the optimal
transformations between image pairs. These trained networks can further be
optimized on a single pair of test images - known as test-time optimization.
This work formulates image registration as a meta-learning algorithm. Such
networks can be trained by aligning the training image pairs while
simultaneously improving test-time optimization efficacy; tasks which were
previously considered two independent training and optimization processes. The
proposed meta-registration is hypothesized to maximize the efficiency and
effectiveness of the test-time optimization in the "outer" meta-optimization of
the networks. For image guidance applications that often are time-critical yet
limited in training data, the potentially gained speed and accuracy are
compared with classical registration algorithms, registration networks without
meta-learning, and single-pair optimization without test-time optimization
data. Experiments are presented in this paper using clinical transrectal
ultrasound image data from 108 prostate cancer patients. These experiments
demonstrate the effectiveness of a meta-registration protocol, which yields
significantly improved performance relative to existing learning-based methods.
Furthermore, the meta-registration achieves comparable results to classical
iterative methods in a fraction of the time, owing to its rapid test-time
optimization process.
Related papers
- Recurrent Inference Machine for Medical Image Registration [11.351457718409788]
We propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network.
RIIR is formulated as a meta-learning solver to the registration problem in an iterative manner.
Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only $5%$ of the training data.
arXiv Detail & Related papers (2024-06-19T10:06:35Z) - Incorporating Test-Time Optimization into Training with Dual Networks for Human Mesh Recovery [35.138312681232264]
We propose a dual-network architecture that unifies the training-time and test-time objectives.
Our method, armed with meta-learning and the dual networks, outperforms state-of-the-art regression-based and optimization-based HMR approaches.
arXiv Detail & Related papers (2024-01-25T12:04:53Z) - Adaptive Image Registration: A Hybrid Approach Integrating Deep Learning
and Optimization Functions for Enhanced Precision [13.242184146186974]
We propose a single framework for image registration based on deep neural networks and optimization.
We show improvements of up to 1.6% in test data, while maintaining the same inference time, and a substantial 1.0% points performance gain in deformation field smoothness.
arXiv Detail & Related papers (2023-11-27T02:48:06Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Automated Learning for Deformable Medical Image Registration by Jointly
Optimizing Network Architectures and Objective Functions [69.6849409155959]
This paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimize both architectures and their corresponding training objectives.
We conduct image registration experiments on multi-site volume datasets and various registration tasks.
Our results show that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-14T01:54:38Z) - An Empirical Analysis of Recurrent Learning Algorithms In Neural Lossy
Image Compression Systems [73.48927855855219]
Recent advances in deep learning have resulted in image compression algorithms that outperform JPEG and JPEG 2000 on the standard Kodak benchmark.
In this paper, we perform the first large-scale comparison of recent state-of-the-art hybrid neural compression algorithms.
arXiv Detail & Related papers (2022-01-27T19:47:51Z) - Multi-scale Neural ODEs for 3D Medical Image Registration [7.715565365558909]
Image registration plays an important role in medical image analysis.
Deep learning methods such as learn-to-map are much faster but either iterative or coarse-to-fine approach is required to improve accuracy for handling large motions.
In this work, we proposed to learn a registration via a multi-scale neural ODE model.
arXiv Detail & Related papers (2021-06-16T00:26:53Z) - Deep Matching Prior: Test-Time Optimization for Dense Correspondence [37.492074298574664]
We show that an image pair-specific prior can be captured by solely optimizing the untrained matching networks on an input pair of images.
Experiments demonstrate that our framework, dubbed Deep Matching Prior (DMP), is competitive, or even outperforms, against the latest learning-based methods.
arXiv Detail & Related papers (2021-06-06T10:56:01Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.