論文の概要: DeepSeek-Coder: When the Large Language Model Meets Programming -- The
Rise of Code Intelligence
- arxiv url: http://arxiv.org/abs/2401.14196v1
- Date: Thu, 25 Jan 2024 14:17:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 14:18:04.050014
- Title: DeepSeek-Coder: When the Large Language Model Meets Programming -- The
Rise of Code Intelligence
- Title(参考訳): DeepSeek-Coder: 大規模言語モデルがプログラミングに出会ったとき - コードインテリジェンスの増加
- Authors: Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, Wenfeng
Liang
- Abstract要約: 私たちはDeepSeek-Coderシリーズを紹介します。これは、サイズが1.3Bから33Bまでのオープンソースのコードモデルで、2兆トークンでゼロからトレーニングされています。
評価の結果、DeepSeek-Coderは複数のベンチマークでオープンソースのコードモデル間で最先端のパフォーマンスを実現していることがわかった。
DeepSeek-Coderモデルは、調査と制限なしの商用使用の両方を可能にする寛容なライセンス下にある。
- 参考スコア(独自算出の注目度): 42.517055368627226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of large language models has revolutionized code
intelligence in software development. However, the predominance of
closed-source models has restricted extensive research and development. To
address this, we introduce the DeepSeek-Coder series, a range of open-source
code models with sizes from 1.3B to 33B, trained from scratch on 2 trillion
tokens. These models are pre-trained on a high-quality project-level code
corpus and employ a fill-in-the-blank task with a 16K window to enhance code
generation and infilling. Our extensive evaluations demonstrate that
DeepSeek-Coder not only achieves state-of-the-art performance among open-source
code models across multiple benchmarks but also surpasses existing
closed-source models like Codex and GPT-3.5. Furthermore, DeepSeek-Coder models
are under a permissive license that allows for both research and unrestricted
commercial use.
- Abstract(参考訳): 大規模言語モデルの急速な開発は、ソフトウェア開発におけるコードインテリジェンスに革命をもたらした。
しかし、クローズドソースモデルの優位は広範な研究と開発を制限している。
これに対処するために、我々は2兆トークンでスクラッチからトレーニングされた、1.3bから33bまでのサイズのオープンソースのコードモデルであるdeepseek-coderシリーズを紹介します。
これらのモデルは高品質なプロジェクトレベルのコードコーパスで事前トレーニングされ、コード生成とインフィルリングを強化するために16kウィンドウのフィルイン・ザ・ブランクタスクを使用する。
広範な評価結果から,deepseek-coderは,複数のベンチマークをまたいだオープンソースコードモデル間の最先端のパフォーマンスを実現するだけでなく,codexやgpt-3.5といった既存のクローズドソースモデルを超えていることが示された。
さらに、DeepSeek-Coderモデルは、調査と制限なしの商用使用の両方を可能にするパーミッシブライセンス下にある。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence [43.589403386634615]
DeepSeek-Coder-V2は、コード固有のタスクでGPT4-Turboに匹敵するパフォーマンスを実現する、オープンソースのコード言語モデルである。
DeepSeek-Coder-V2はさらに6兆トークンを追加して、DeepSeek-V2の中間チェックポイントから事前トレーニングされている。
標準的なベンチマーク評価では、GPT4-Turbo、Claude 3 Opus、Gemini 1.5 Proといったクローズドソースモデルと比較して、DeepSeek-Coder-V2は優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-06-17T13:51:35Z) - Granite Code Models: A Family of Open Foundation Models for Code Intelligence [37.946802472358996]
コードでトレーニングされた大規模言語モデル(LLM)は、ソフトウェア開発プロセスに革命をもたらしています。
LLMは、人間のプログラマの生産性を向上させるために、ソフトウェア開発環境に統合されています。
コード生成タスクのためのデコーダのみのコードモデルであるGraniteシリーズを紹介する。
論文 参考訳(メタデータ) (2024-05-07T13:50:40Z) - Does Your Neural Code Completion Model Use My Code? A Membership Inference Approach [66.51005288743153]
本稿では,現在のニューラルコード補完モデルの法的および倫理的問題について考察する。
私たちは、もともと分類タスクのために作られたメンバシップ推論アプローチ(CodeMIと呼ばれる)を調整します。
我々は,この適応型アプローチの有効性を,多種多様なニューラルコード補完モデルで評価した。
論文 参考訳(メタデータ) (2024-04-22T15:54:53Z) - StarCoder 2 and The Stack v2: The Next Generation [105.93298676368798]
私たちは3.3から4.3兆のトークンで3B、7B、15BパラメータでStarCoder2モデルをトレーニングします。
我々は、それらをCode LLMベンチマークの包括的なセットで徹底的に評価する。
私たちの大きなモデルであるStarCoder2-15Bは、同等の大きさの他のモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-29T13:53:35Z) - StarCoder: may the source be with you! [79.93915935620798]
BigCodeコミュニティでは、StarCoderとStarCoderBaseを紹介している。
StarCoderBaseは、寛容にライセンスされたGitHubリポジトリの大規模なコレクションであるThe Stackからソースされた1兆のトークンに基づいてトレーニングされている。
論文 参考訳(メタデータ) (2023-05-09T08:16:42Z) - A Systematic Evaluation of Large Language Models of Code [88.34057460577957]
コードの大規模な言語モデル(LM)は、最近、コードを完成させ、自然言語記述からコードを合成する大きな可能性を示しています。
現在の最先端のコードLMは公開されておらず、モデルやデータ設計の決定について多くの疑問が残されている。
Codexはオープンソースではありませんが、既存のオープンソースモデルはいくつかのプログラミング言語でクローズな結果が得られることが分かりました。
GPT-2アーキテクチャに基づいた2.7Bパラメータを持つ新しいモデルPolyCoderをリリースし、12のプログラミング言語を1台のマシンで249GBのコードでトレーニングした。
論文 参考訳(メタデータ) (2022-02-26T15:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。