RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models via Romanization
- URL: http://arxiv.org/abs/2401.14280v3
- Date: Sun, 23 Jun 2024 11:40:20 GMT
- Title: RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models via Romanization
- Authors: Jaavid Aktar Husain, Raj Dabre, Aswanth Kumar, Jay Gala, Thanmay Jayakumar, Ratish Puduppully, Anoop Kunchukuttan,
- Abstract summary: Romanized text reduces token fertility by 2x-4x.
Romanized text matches or outperforms native script representation across various NLU, NLG, and MT tasks.
- Score: 17.46921734622369
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages that use non-Roman scripts. We propose an approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Our approach involves the continual pretraining of an English LLM like Llama 2 on romanized text of non-English, non-Roman script languages, followed by instruction tuning on romanized data. The results indicate that romanized text not only reduces token fertility by 2x-4x but also matches or outperforms native script representation across various NLU, NLG, and MT tasks. Moreover, the embeddings computed on romanized text exhibit closer alignment with their English translations than those from the native script. Our approach presents a promising direction for leveraging the power of English LLMs in languages traditionally underrepresented in NLP. Our code is available on https://github.com/AI4Bharat/romansetu.
Related papers
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
We present a novel and simple yet effective method called textbfDictionary textbfInsertion textbfPrompting (textbfDIP)
When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs.
It then enables better translation into English and better English model thinking steps which leads to obviously better results.
arXiv Detail & Related papers (2024-11-02T05:10:50Z) - Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
The transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language.
Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method.
arXiv Detail & Related papers (2024-06-28T08:59:24Z) - Cross-lingual Editing in Multilingual Language Models [1.3062731746155414]
This paper introduces the cross-lingual model editing (textbfXME) paradigm, wherein a fact is edited in one language, and the subsequent update propagation is observed across other languages.
The results reveal notable performance limitations of state-of-the-art METs under the XME setting, mainly when the languages involved belong to two distinct script families.
arXiv Detail & Related papers (2024-01-19T06:54:39Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP.
We study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages.
Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups.
arXiv Detail & Related papers (2023-04-18T09:58:34Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
We explore prompting multilingual models to generate code-mixed data for seven languages in South East Asia (SEA)
We find that publicly available multilingual instruction-tuned models such as BLOOMZ are incapable of producing texts with phrases or clauses from different languages.
ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its performance varies depending on the prompt template and language pairing.
arXiv Detail & Related papers (2023-03-23T18:16:30Z) - Exploiting Language Relatedness for Low Web-Resource Language Model
Adaptation: An Indic Languages Study [14.34516262614775]
We argue that relatedness among languages in a language family may be exploited to overcome some of the corpora limitations of LRLs.
We focus on Indian languages, and exploit relatedness along two dimensions: (1) script (since many Indic scripts originated from the Brahmic script) and (2) sentence structure.
arXiv Detail & Related papers (2021-06-07T20:43:02Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.