Improving Antibody Humanness Prediction using Patent Data
- URL: http://arxiv.org/abs/2401.14442v3
- Date: Sat, 8 Jun 2024 07:14:03 GMT
- Title: Improving Antibody Humanness Prediction using Patent Data
- Authors: Talip Ucar, Aubin Ramon, Dino Oglic, Rebecca Croasdale-Wood, Tom Diethe, Pietro Sormanni,
- Abstract summary: We investigate the potential of patent data for improving the antibody humanness prediction using a multi-stage, multi-loss training process.
We pose the initial learning stage as a weakly-supervised contrastive-learning problem.
We then freeze a part of the contrastive encoder and continue training it on the patent data using the cross-entropy loss to predict the humanness score of a given antibody sequence.
- Score: 6.185604158465185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the potential of patent data for improving the antibody humanness prediction using a multi-stage, multi-loss training process. Humanness serves as a proxy for the immunogenic response to antibody therapeutics, one of the major causes of attrition in drug discovery and a challenging obstacle for their use in clinical settings. We pose the initial learning stage as a weakly-supervised contrastive-learning problem, where each antibody sequence is associated with possibly multiple identifiers of function and the objective is to learn an encoder that groups them according to their patented properties. We then freeze a part of the contrastive encoder and continue training it on the patent data using the cross-entropy loss to predict the humanness score of a given antibody sequence. We illustrate the utility of the patent data and our approach by performing inference on three different immunogenicity datasets, unseen during training. Our empirical results demonstrate that the learned model consistently outperforms the alternative baselines and establishes new state-of-the-art on five out of six inference tasks, irrespective of the used metric.
Related papers
- Evaluating Zero-Shot Scoring for In Vitro Antibody Binding Prediction
with Experimental Validation [0.08968838300743379]
We compare 8 common scoring paradigms based on open-source models to classify antibody designs as binders or non-binders.
Results show that existing methods struggle to detect binders, and performance is highly variable across antigens.
arXiv Detail & Related papers (2023-12-07T23:34:03Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
This paper presents a new deep learning-based framework for linear B-cell prediction as well as antibody type-specific classification.
We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of antibodies.
Experimental results on data curated from the largest public database demonstrate the validity of the proposed methods.
arXiv Detail & Related papers (2023-09-05T09:18:29Z) - AI driven B-cell Immunotherapy Design [0.0]
The effectiveness of antigen neutralisation and elimination hinges upon the strength, sensitivity, and specificity of the paratope-epitope interaction.
In recent years, artificial intelligence and machine learning methods have made significant strides, revolutionising the prediction of protein structures and their complexes.
This review focuses on the progress of machine learning-based tools and their frameworks in the domain of B-cell immunotherapy design.
arXiv Detail & Related papers (2023-09-03T09:14:10Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
We propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework.
OTCSurv uses survival durations from both censored and observed data to define temporal distinctiveness.
We conduct experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI)
arXiv Detail & Related papers (2023-08-24T22:36:22Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
We introduce a new method for combining semi-supervised with multiple-instance learning.
We show that by leveraging the unlabelled data of 454 subjects we can achieve large performance gains in per-subject tremor detection.
arXiv Detail & Related papers (2023-04-29T12:25:10Z) - Antibody Representation Learning for Drug Discovery [7.291511531280898]
We present results on a novel SARS-CoV-2 antibody binding dataset and an additional benchmark dataset.
We compare three classes of models: conventional statistical sequence models, supervised learning on each dataset independently, and fine-tuning an antibody specific pre-trained language model.
Experimental results suggest that self-supervised pretraining of feature representation consistently offers significant improvement in over previous approaches.
arXiv Detail & Related papers (2022-10-05T13:48:41Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.