Generative Humanization for Therapeutic Antibodies
- URL: http://arxiv.org/abs/2412.04737v2
- Date: Mon, 09 Dec 2024 02:26:45 GMT
- Title: Generative Humanization for Therapeutic Antibodies
- Authors: Cade Gordon, Aniruddh Raghu, Peyton Greenside, Hunter Elliott,
- Abstract summary: Humanization is a sequence optimization strategy that addresses one critical risk called immunogenicity.
We re-frame humanization as a conditional generative modeling task, where humanizing mutations are sampled from a language model trained on human antibody data.
We describe a sampling process that incorporates models of therapeutic attributes, such as antigen binding affinity, to obtain candidate sequences that have both reduced immunogenicity risk and maintained or improved therapeutic properties.
- Score: 4.456125565993172
- License:
- Abstract: Antibody therapies have been employed to address some of today's most challenging diseases, but must meet many criteria during drug development before reaching a patient. Humanization is a sequence optimization strategy that addresses one critical risk called immunogenicity - a patient's immune response to the drug - by making an antibody more "human-like" in the absence of a predictive lab-based test for immunogenicity. However, existing humanization strategies generally yield very few humanized candidates, which may have degraded biophysical properties or decreased drug efficacy. Here, we re-frame humanization as a conditional generative modeling task, where humanizing mutations are sampled from a language model trained on human antibody data. We describe a sampling process that incorporates models of therapeutic attributes, such as antigen binding affinity, to obtain candidate sequences that have both reduced immunogenicity risk and maintained or improved therapeutic properties, allowing this algorithm to be readily embedded into an iterative antibody optimization campaign. We demonstrate in silico and in lab validation that in real therapeutic programs our generative humanization method produces diverse sets of antibodies that are both (1) highly-human and (2) have favorable therapeutic properties, such as improved binding to target antigens.
Related papers
- Leveraging Large Language Models to Predict Antibody Biological Activity Against Influenza A Hemagglutinin [0.15547733154162566]
We develop an AI model for predicting the binding and receptor blocking activity of antibodies against influenza A hemagglutininin (HA) antigens.
Our models achieved an AUROC $geq$ 0.91 for predicting the activity of existing antibodies against seen HAs and an AUROC of 0.9 for unseen HAs.
arXiv Detail & Related papers (2025-02-02T06:48:45Z) - Bayesian Optimization of Antibodies Informed by a Generative Model of Evolving Sequences [36.58091564004384]
To build effective therapeutics, biologists iteratively mutate antibody sequences to improve binding and stability.
Proposed mutations can be informed by previous measurements or by learning from large antibody databases to predict only typical antibodies.
We introduce Clone-informed Bayesian Optimization (CloneBO), a Bayesian optimization procedure that efficiently optimize antibodies in the lab.
arXiv Detail & Related papers (2024-12-10T18:57:48Z) - Opponent Shaping for Antibody Development [49.26728828005039]
Anti-viral therapies are typically designed to target only the current strains of a virus.
therapy-induced selective pressures act on viruses to drive the emergence of mutated strains, against which initial therapies have reduced efficacy.
We build on a computational model of binding between antibodies and viral antigens to implement a genetic simulation of viral evolutionary escape.
arXiv Detail & Related papers (2024-09-16T14:56:27Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
We tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences.
We propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens.
arXiv Detail & Related papers (2024-03-25T09:41:49Z) - Improving Antibody Humanness Prediction using Patent Data [6.185604158465185]
We investigate the potential of patent data for improving the antibody humanness prediction using a multi-stage, multi-loss training process.
We pose the initial learning stage as a weakly-supervised contrastive-learning problem.
We then freeze a part of the contrastive encoder and continue training it on the patent data using the cross-entropy loss to predict the humanness score of a given antibody sequence.
arXiv Detail & Related papers (2024-01-25T16:04:17Z) - AI driven B-cell Immunotherapy Design [0.0]
The effectiveness of antigen neutralisation and elimination hinges upon the strength, sensitivity, and specificity of the paratope-epitope interaction.
In recent years, artificial intelligence and machine learning methods have made significant strides, revolutionising the prediction of protein structures and their complexes.
This review focuses on the progress of machine learning-based tools and their frameworks in the domain of B-cell immunotherapy design.
arXiv Detail & Related papers (2023-09-03T09:14:10Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - Antibody Representation Learning for Drug Discovery [7.291511531280898]
We present results on a novel SARS-CoV-2 antibody binding dataset and an additional benchmark dataset.
We compare three classes of models: conventional statistical sequence models, supervised learning on each dataset independently, and fine-tuning an antibody specific pre-trained language model.
Experimental results suggest that self-supervised pretraining of feature representation consistently offers significant improvement in over previous approaches.
arXiv Detail & Related papers (2022-10-05T13:48:41Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.