Who Are We Missing? A Principled Approach to Characterizing the Underrepresented Population
- URL: http://arxiv.org/abs/2401.14512v4
- Date: Sun, 25 Aug 2024 16:36:02 GMT
- Title: Who Are We Missing? A Principled Approach to Characterizing the Underrepresented Population
- Authors: Harsh Parikh, Rachael Ross, Elizabeth Stuart, Kara Rudolph,
- Abstract summary: We introduce an optimization-based approach, Rashomon Set of Optimal Trees (ROOT), to characterize underrepresented groups.
ROOT optimize the target subpopulation distribution by minimizing the variance of the target average treatment effect estimate.
Our framework offers a systematic approach to enhance decision-making accuracy and inform future trials in diverse populations.
- Score: 5.568543786710628
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Randomized controlled trials (RCTs) serve as the cornerstone for understanding causal effects, yet extending inferences to target populations presents challenges due to effect heterogeneity and underrepresentation. Our paper addresses the critical issue of identifying and characterizing underrepresented subgroups in RCTs, proposing a novel framework for refining target populations to improve generalizability. We introduce an optimization-based approach, Rashomon Set of Optimal Trees (ROOT), to characterize underrepresented groups. ROOT optimizes the target subpopulation distribution by minimizing the variance of the target average treatment effect estimate, ensuring more precise treatment effect estimations. Notably, ROOT generates interpretable characteristics of the underrepresented population, aiding researchers in effective communication. Our approach demonstrates improved precision and interpretability compared to alternatives, as illustrated with synthetic data experiments. We apply our methodology to extend inferences from the Starting Treatment with Agonist Replacement Therapies (START) trial -- investigating the effectiveness of medication for opioid use disorder -- to the real-world population represented by the Treatment Episode Dataset: Admissions (TEDS-A). By refining target populations using ROOT, our framework offers a systematic approach to enhance decision-making accuracy and inform future trials in diverse populations.
Related papers
- Adaptive Experiment Design with Synthetic Controls [79.69661880236293]
We propose Syntax, an exploratory trial design that identifies subpopulations with positive treatment effect among many subpopulations.
We validate the performance of Syntax and provide insights into when it might have an advantage over conventional trial designs through experiments.
arXiv Detail & Related papers (2024-01-30T17:45:47Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Causal Inference under Data Restrictions [0.0]
This dissertation focuses on modern causal inference under uncertainty and data restrictions.
It includes applications to neoadjuvant clinical trials, distributed data networks, and robust individualized decision making.
arXiv Detail & Related papers (2023-01-20T20:14:32Z) - Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data [7.308241944759317]
An individualized treatment regime (ITR) is a decision rule that assigns treatments based on patients' characteristics.
We propose a doubly robust estimator of the value function, and the optimal ITR is learned by maximizing the value function within a pre-specified class of ITRs.
We evaluate the empirical performance of the proposed method by simulation studies and a real data application of sodium bicarbonate therapy for patients with severe metabolic acidaemia.
arXiv Detail & Related papers (2023-01-13T11:47:10Z) - Adaptive Identification of Populations with Treatment Benefit in
Clinical Trials: Machine Learning Challenges and Solutions [78.31410227443102]
We study the problem of adaptively identifying patient subpopulations that benefit from a given treatment during a confirmatory clinical trial.
We propose AdaGGI and AdaGCPI, two meta-algorithms for subpopulation construction.
arXiv Detail & Related papers (2022-08-11T14:27:49Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Targeted Optimal Treatment Regime Learning Using Summary Statistics [12.767669486030352]
We consider an ITR estimation problem where the source and target populations may be heterogeneous.
We develop a weighting framework that tailors an ITR for a given target population by leveraging the available summary statistics.
Specifically, we propose a calibrated augmented inverse probability weighted estimator of the value function for the target population and estimate an optimal ITR.
arXiv Detail & Related papers (2022-01-17T06:11:31Z) - CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree
Search [10.961093227672398]
A clinically meaningful subgroup learning approach should identify the maximum number of patients who can benefit from the better treatment.
We present an optimal subgroup selection rule (SSR) that maximizes the number of selected patients.
We propose a ConstrAined PolIcy Tree seArch aLgorithm to find the optimal SSR within the interpretable decision tree class.
arXiv Detail & Related papers (2021-10-11T22:41:07Z) - Robust Sample Weighting to Facilitate Individualized Treatment Rule
Learning for a Target Population [6.1210839791227745]
Learning individualized treatment rules (ITRs) is an important topic in precision medicine.
We develop a weighting framework to mitigate the impact of misspecification on optimal ITRs from a source population to a target population.
Our method can greatly improve ITR estimation for the target population compared with other weighting methods.
arXiv Detail & Related papers (2021-05-03T00:05:18Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.