Enhancing Diagnostic Accuracy through Multi-Agent Conversations: Using Large Language Models to Mitigate Cognitive Bias
- URL: http://arxiv.org/abs/2401.14589v2
- Date: Sun, 12 May 2024 05:28:23 GMT
- Title: Enhancing Diagnostic Accuracy through Multi-Agent Conversations: Using Large Language Models to Mitigate Cognitive Bias
- Authors: Yu He Ke, Rui Yang, Sui An Lie, Taylor Xin Yi Lim, Hairil Rizal Abdullah, Daniel Shu Wei Ting, Nan Liu,
- Abstract summary: Cognitive biases in clinical decision-making significantly contribute to errors in diagnosis and suboptimal patient outcomes.
This study explores the role of large language models in mitigating these biases through the utilization of a multi-agent framework.
- Score: 5.421033429862095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Cognitive biases in clinical decision-making significantly contribute to errors in diagnosis and suboptimal patient outcomes. Addressing these biases presents a formidable challenge in the medical field. Objective: This study explores the role of large language models (LLMs) in mitigating these biases through the utilization of a multi-agent framework. We simulate the clinical decision-making processes through multi-agent conversation and evaluate its efficacy in improving diagnostic accuracy. Methods: A total of 16 published and unpublished case reports where cognitive biases have resulted in misdiagnoses were identified from the literature. In the multi-agent framework, we leveraged GPT-4 to facilitate interactions among four simulated agents to replicate clinical team dynamics. Each agent has a distinct role: 1) To make the final diagnosis after considering the discussions, 2) The devil's advocate and correct confirmation and anchoring bias, 3) The tutor and facilitator of the discussion to reduce premature closure bias, and 4) To record and summarize the findings. A total of 80 simulations were evaluated for the accuracy of initial diagnosis, top differential diagnosis and final two differential diagnoses. Results: In a total of 80 responses evaluating both initial and final diagnoses, the initial diagnosis had an accuracy of 0% (0/80), but following multi-agent discussions, the accuracy for the top differential diagnosis increased to 71.3% (57/80), and for the final two differential diagnoses, to 80.0% (64/80). Conclusions: The framework demonstrated an ability to re-evaluate and correct misconceptions, even in scenarios with misleading initial investigations. The LLM-driven multi-agent conversation framework shows promise in enhancing diagnostic accuracy in diagnostically challenging medical scenarios.
Related papers
- ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification [57.22053411719822]
ChestX-Reasoner is a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports.
Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards.
arXiv Detail & Related papers (2025-04-29T16:48:23Z) - Leveraging LLMs for Predicting Unknown Diagnoses from Clinical Notes [21.43498764977656]
Discharge summaries tend to provide more complete information, which can help infer accurate diagnoses.
This study investigates whether large language models (LLMs) can predict implicitly mentioned diagnoses from clinical notes and link them to corresponding medications.
arXiv Detail & Related papers (2025-03-28T02:15:57Z) - Medical Reasoning in LLMs: An In-Depth Analysis of DeepSeek R1 [0.0]
This study assesses DeepSeek R1's medical reasoning against expert patterns using 100 MedQA clinical cases.
The model achieved 93% diagnostic accuracy, demonstrating systematic clinical judgment through differential diagnosis, guideline-based treatment selection, and integration of patient-specific factors.
Error analysis of seven incorrect cases revealed persistent limitations: anchoring bias, challenges reconciling conflicting data, insufficient exploration of alternatives, overthinking, knowledge gaps, and premature prioritization of definitive treatment over intermediate care.
arXiv Detail & Related papers (2025-03-27T09:18:08Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.
We propose a novel approach utilizing structured medical reasoning.
Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - MSDiagnosis: A Benchmark for Evaluating Large Language Models in Multi-Step Clinical Diagnosis [8.641421154025211]
We propose a Chinese clinical diagnostic benchmark, called MSDiagnosis.
This benchmark consists of 2,225 cases from 12 departments, covering tasks such as primary diagnosis, differential diagnosis, and final diagnosis.
arXiv Detail & Related papers (2024-08-19T14:31:57Z) - Methodology and Real-World Applications of Dynamic Uncertain Causality Graph for Clinical Diagnosis with Explainability and Invariance [41.373856519548404]
Dynamic Uncertain Causality Graph (DUCG) approach is causality-driven, explainable, and invariant across different application scenarios.
46 DUCG models covering 54 chief complaints were constructed.
Over one million real diagnosis cases have been performed, with only 17 incorrect diagnoses identified.
arXiv Detail & Related papers (2024-06-09T11:37:45Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
We propose a framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases.
Our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility.
arXiv Detail & Related papers (2024-01-29T12:25:30Z) - Medical Dialogue Generation via Intuitive-then-Analytical Differential
Diagnosis [14.17497921394565]
We propose a medical dialogue generation framework with the Intuitive-then-Analytic Differential Diagnosis (IADDx)
Our method starts with a differential diagnosis via retrieval-based intuitive association and subsequently refines it through a graph-enhanced analytic procedure.
Experimental results on two datasets validate the efficacy of our method.
arXiv Detail & Related papers (2024-01-12T12:35:19Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - The Case Records of ChatGPT: Language Models and Complex Clinical
Questions [0.35157846138914034]
The accuracy of large language AI models GPT4 and GPT3.5 in diagnosing complex clinical cases was investigated.
GPT4 and GPT3.5 accurately provided the correct diagnosis in 26% and 22% of cases in one attempt, and 46% and 42% within three attempts, respectively.
arXiv Detail & Related papers (2023-05-09T16:58:32Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.