Efficient Constraint Generation for Stochastic Shortest Path Problems
- URL: http://arxiv.org/abs/2401.14636v1
- Date: Fri, 26 Jan 2024 04:00:07 GMT
- Title: Efficient Constraint Generation for Stochastic Shortest Path Problems
- Authors: Johannes Schmalz, Felipe Trevizan
- Abstract summary: We present an efficient version of constraint generation for Shortest Path Problems (SSPs)
This technique allows algorithms to ignore sub-optimal actions and avoid computing their costs-to-go.
Our experiments show that CG-iLAO* ignores up to 57% of iLAO*'s actions and it solves problems up to 8x and 3x faster than LRTDP and iLAO*.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current methods for solving Stochastic Shortest Path Problems (SSPs) find
states' costs-to-go by applying Bellman backups, where state-of-the-art methods
employ heuristics to select states to back up and prune. A fundamental
limitation of these algorithms is their need to compute the cost-to-go for
every applicable action during each state backup, leading to unnecessary
computation for actions identified as sub-optimal. We present new connections
between planning and operations research and, using this framework, we address
this issue of unnecessary computation by introducing an efficient version of
constraint generation for SSPs. This technique allows algorithms to ignore
sub-optimal actions and avoid computing their costs-to-go. We also apply our
novel technique to iLAO* resulting in a new algorithm, CG-iLAO*. Our
experiments show that CG-iLAO* ignores up to 57% of iLAO*'s actions and it
solves problems up to 8x and 3x faster than LRTDP and iLAO*.
Related papers
- Exponentially Weighted Algorithm for Online Network Resource Allocation with Long-Term Constraints [0.6466206145151128]
This paper studies an online optimal resource reservation problem in communication networks with job transfers.
We propose a novel algorithm based on a randomized exponentially weighted method that encompasses long-term constraints.
arXiv Detail & Related papers (2024-05-03T10:12:40Z) - High-dimensional Contextual Bandit Problem without Sparsity [8.782204980889077]
We propose an explore-then-commit (EtC) algorithm to address this problem and examine its performance.
We derive the optimal rate of the ETC algorithm in terms of $T$ and show that this rate can be achieved by balancing exploration and exploitation.
We introduce an adaptive explore-then-commit (AEtC) algorithm that adaptively finds the optimal balance.
arXiv Detail & Related papers (2023-06-19T15:29:32Z) - Logarithmic Switching Cost in Reinforcement Learning beyond Linear MDPs [31.673857053336352]
We propose an algorithm that achieves the near-optimal regret with a switching cost logarithmic in the number of episodes and linear in the time-horizon $H$.
We also show the doubling trick'' used in ELEANOR-LowSwitching can be further leveraged for the generalized linear function approximation.
arXiv Detail & Related papers (2023-02-24T05:14:27Z) - CACTO: Continuous Actor-Critic with Trajectory Optimization -- Towards
global optimality [5.0915256711576475]
This paper presents a novel algorithm for the continuous control of dynamical systems that combines Trayy (TO) and Reinforcement Learning (RL) in a single trajectory.
arXiv Detail & Related papers (2022-11-12T10:16:35Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Learning the Step-size Policy for the Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno Algorithm [3.7470451129384825]
We consider the problem of how to learn a step-size policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.
We propose a neural network architecture with local information of the current gradient as the input.
The step-length policy is learned from data of similar optimization problems, avoids additional evaluations of the objective function, and guarantees that the output step remains inside a pre-defined interval.
arXiv Detail & Related papers (2020-10-03T09:34:03Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.