論文の概要: Under the Surface: Tracking the Artifactuality of LLM-Generated Data
- arxiv url: http://arxiv.org/abs/2401.14698v2
- Date: Tue, 30 Jan 2024 05:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 11:47:36.085680
- Title: Under the Surface: Tracking the Artifactuality of LLM-Generated Data
- Title(参考訳): 表面下:LLM生成データの実用性追跡
- Authors: Debarati Das, Karin De Langis, Anna Martin-Boyle, Jaehyung Kim, Minhwa
Lee, Zae Myung Kim, Shirley Anugrah Hayati, Risako Owan, Bin Hu, Ritik
Parkar, Ryan Koo, Jonginn Park, Aahan Tyagi, Libby Ferland, Sanjali Roy,
Vincent Liu, and Dongyeop Kang
- Abstract要約: この研究は、人工データの生成において、大きな言語モデル(LLM)の役割を拡大するものである。
我々の知る限りでは、多種多様な LLM 生成テキストデータを収集する最初の研究である。
人工データの人間のパフォーマンスにマッチする能力にもかかわらず、本論文は重大な隠蔽格差を明らかにした。
- 参考スコア(独自算出の注目度): 21.002983022237604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work delves into the expanding role of large language models (LLMs) in
generating artificial data. LLMs are increasingly employed to create a variety
of outputs, including annotations, preferences, instruction prompts, simulated
dialogues, and free text. As these forms of LLM-generated data often intersect
in their application, they exert mutual influence on each other and raise
significant concerns about the quality and diversity of the artificial data
incorporated into training cycles, leading to an artificial data ecosystem. To
the best of our knowledge, this is the first study to aggregate various types
of LLM-generated text data, from more tightly constrained data like "task
labels" to more lightly constrained "free-form text". We then stress test the
quality and implications of LLM-generated artificial data, comparing it with
human data across various existing benchmarks. Despite artificial data's
capability to match human performance, this paper reveals significant hidden
disparities, especially in complex tasks where LLMs often miss the nuanced
understanding of intrinsic human-generated content. This study critically
examines diverse LLM-generated data and emphasizes the need for ethical
practices in data creation and when using LLMs. It highlights the LLMs'
shortcomings in replicating human traits and behaviors, underscoring the
importance of addressing biases and artifacts produced in LLM-generated content
for future research and development. All data and code are available on our
project page.
- Abstract(参考訳): この研究は、人工データの生成において、大きな言語モデル(LLM)の役割を拡大している。
LLMは、アノテーション、好み、命令プロンプト、シミュレートされた対話、自由テキストなど、様々なアウトプットを作成するためにますます使われている。
これらのLCM生成データはしばしばアプリケーションに交わるため、相互に影響を及ぼし、トレーニングサイクルに組み込まれた人工データの品質と多様性に関する重要な懸念を提起し、人工データエコシステムへと繋がる。
我々の知る限りでは、「タスクラベル」のようなより厳密に制約されたデータから、より軽量に制約された「フリーフォームテキスト」まで、様々な LLM 生成テキストデータを収集する最初の研究である。
次に、LLM生成人工データの品質と意味をテストし、既存のベンチマークで人的データと比較する。
人工データの人間のパフォーマンスにマッチする能力にもかかわらず、特にLLMが本質的な人為的コンテンツに対する微妙な理解を欠いている複雑なタスクにおいて、隠れた相違が顕著である。
本研究は, LLMの生成する多種多様なデータについて批判的に検討し, LLMを用いた場合の倫理的実践の必要性を強調した。
llmが生み出したコンテンツのバイアスやアーティファクトに対処することの重要性を強調し、人間の特性や行動の複製におけるllmの欠点を強調する。
すべてのデータとコードは、プロジェクトのページで利用可能です。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Regurgitative Training: The Value of Real Data in Training Large Language Models [1.2815904071470703]
LLMの性能に及ぼす「相対的学習」の影響について検討した。
退行訓練がLSMの性能を著しく向上させる強い証拠が得られている。
本稿では,3つの異なる戦略を提案して評価する。
論文 参考訳(メタデータ) (2024-07-03T18:42:55Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
大規模言語モデル(LLM)は活発な研究トピックとして現れている。
LLMはイベントの記憶、新しい情報の導入、ドメイン固有の問題や幻覚への対処において課題に直面している。
本稿では,複数のデータソースから知識グラフを自動的に構築する手法を提案する。
論文 参考訳(メタデータ) (2024-04-14T16:34:31Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic Analysis (TA)は、多くの分野や分野における定性的データを解析するために広く使われている。
ヒューマンコーダはデータの解釈とコーディングを複数のイテレーションで開発し、より深くする。
In-context Learning (ICL) を用いたTAを実現するための人間-LLM協調フレームワーク(LLM-in-the-loop)を提案する。
論文 参考訳(メタデータ) (2023-10-23T17:05:59Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。