A Framework for Assurance Audits of Algorithmic Systems
- URL: http://arxiv.org/abs/2401.14908v2
- Date: Tue, 28 May 2024 13:20:37 GMT
- Title: A Framework for Assurance Audits of Algorithmic Systems
- Authors: Khoa Lam, Benjamin Lange, Borhane Blili-Hamelin, Jovana Davidovic, Shea Brown, Ali Hasan,
- Abstract summary: We propose the criterion audit as an operationalizable compliance and assurance external audit framework.
We argue that AI audits should similarly provide assurance to their stakeholders about AI organizations' ability to govern their algorithms in ways that harms and uphold human values.
We conclude by offering a critical discussion on the benefits, inherent limitations, and implementation challenges of applying practices of the more mature financial auditing industry to AI auditing.
- Score: 2.2342503377379725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasing number of regulations propose AI audits as a mechanism for achieving transparency and accountability for artificial intelligence (AI) systems. Despite some converging norms around various forms of AI auditing, auditing for the purpose of compliance and assurance currently lacks agreed-upon practices, procedures, taxonomies, and standards. We propose the criterion audit as an operationalizable compliance and assurance external audit framework. We model elements of this approach after financial auditing practices, and argue that AI audits should similarly provide assurance to their stakeholders about AI organizations' ability to govern their algorithms in ways that mitigate harms and uphold human values. We discuss the necessary conditions for the criterion audit and provide a procedural blueprint for performing an audit engagement in practice. We illustrate how this framework can be adapted to current regulations by deriving the criteria on which bias audits can be performed for in-scope hiring algorithms, as required by the recently effective New York City Local Law 144 of 2021. We conclude by offering a critical discussion on the benefits, inherent limitations, and implementation challenges of applying practices of the more mature financial auditing industry to AI auditing where robust guardrails against quality assurance issues are only starting to emerge. Our discussion -- informed by experiences in performing these audits in practice -- highlights the critical role that an audit ecosystem plays in ensuring the effectiveness of audits.
Related papers
- From Transparency to Accountability and Back: A Discussion of Access and Evidence in AI Auditing [1.196505602609637]
Audits can take many forms, including pre-deployment risk assessments, ongoing monitoring, and compliance testing.
There are many operational challenges to AI auditing that complicate its implementation.
We argue that auditing can be cast as a natural hypothesis test, draw parallels hypothesis testing and legal procedure, and argue that this framing provides clear and interpretable guidance on audit implementation.
arXiv Detail & Related papers (2024-10-07T06:15:46Z) - RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation [51.998738311700095]
Regulatory documents, characterized by their length, complexity and frequent updates, are challenging to interpret.
RegNLP is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations.
ObliQA dataset contains 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection.
arXiv Detail & Related papers (2024-09-09T14:44:19Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.
Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems [5.26895401335509]
We present a respective procedure that extends the AI-HLEG guidelines published by the European Commission.
Our audit procedure is based on an ML lifecycle model that explicitly focuses on documentation, accountability, and quality assurance.
We describe two pilots conducted on real-world use cases from two different organisations.
arXiv Detail & Related papers (2024-05-21T20:40:37Z) - Auditing Work: Exploring the New York City algorithmic bias audit regime [0.4580134784455941]
Local Law 144 (LL 144) mandates NYC-based employers using automated employment decision-making tools (AEDTs) in hiring to undergo annual bias audits conducted by an independent auditor.
This paper examines lessons from LL 144 for other national algorithm auditing attempts.
arXiv Detail & Related papers (2024-02-12T22:37:15Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
Risk-limiting audits (RLAs) are techniques for verifying the outcomes of large elections.
We define new families of audits that improve efficiency and offer advances in statistical power.
New audits are enabled by revisiting the standard notion of a cast-vote record so that it can declare multiple possible mark interpretations.
arXiv Detail & Related papers (2024-02-09T16:23:54Z) - AI auditing: The Broken Bus on the Road to AI Accountability [1.9758196889515185]
"AI audit" ecosystem is muddled and imprecise, making it difficult to work through various concepts and map out the stakeholders involved in the practice.
First, we taxonomize current AI audit practices as completed by regulators, law firms, civil society, journalism, academia, consulting agencies.
We find that only a subset of AI audit studies translate to desired accountability outcomes.
arXiv Detail & Related papers (2024-01-25T19:00:29Z) - Who Audits the Auditors? Recommendations from a field scan of the
algorithmic auditing ecosystem [0.971392598996499]
We provide the first comprehensive field scan of the AI audit ecosystem.
We identify emerging best practices as well as methods and tools that are becoming commonplace.
We outline policy recommendations to improve the quality and impact of these audits.
arXiv Detail & Related papers (2023-10-04T01:40:03Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
This study examines issues of algorithmic fairness in the context of systems that inform tax audit selection by the IRS.
We show how the use of more flexible machine learning methods for selecting audits may affect vertical equity.
Our results have implications for the design of algorithmic tools across the public sector.
arXiv Detail & Related papers (2022-06-20T16:27:06Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.