Watermarking Without Standards Is Not AI Governance
- URL: http://arxiv.org/abs/2505.23814v1
- Date: Tue, 27 May 2025 18:10:04 GMT
- Title: Watermarking Without Standards Is Not AI Governance
- Authors: Alexander Nemecek, Yuzhou Jiang, Erman Ayday,
- Abstract summary: We argue that current implementations risk serving as symbolic compliance rather than delivering effective oversight.<n>We propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms.
- Score: 46.71493672772134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking has emerged as a leading technical proposal for attributing generative AI content and is increasingly cited in global governance frameworks. This paper argues that current implementations risk serving as symbolic compliance rather than delivering effective oversight. We identify a growing gap between regulatory expectations and the technical limitations of existing watermarking schemes. Through analysis of policy proposals and industry practices, we show how incentive structures disincentivize robust, auditable deployments. To realign watermarking with governance goals, we propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms. Without enforceable requirements and independent verification, watermarking will remain inadequate for accountability and ultimately undermine broader efforts in AI safety and regulation.
Related papers
- Explainable AI Systems Must Be Contestable: Here's How to Make It Happen [2.5875936082584623]
This paper presents the first rigorous formal definition of contestability in explainable AI.<n>We introduce a modular framework of by-design and post-hoc mechanisms spanning human-centered interfaces, technical processes, and organizational architectures.<n>Our work equips practitioners with the tools to embed genuine recourse and accountability into AI systems.
arXiv Detail & Related papers (2025-06-02T13:32:05Z) - Regulating Ai In Financial Services: Legal Frameworks And Compliance Challenges [0.0]
Article examines the evolving landscape of artificial intelligence (AI) regulation in financial services.<n>It highlights how AI-driven processes, from fraud detection to algorithmic trading, offer efficiency gains yet introduce significant risks.<n>The study compares regulatory approaches across major jurisdictions such as the European Union, United States, and United Kingdom.
arXiv Detail & Related papers (2025-03-17T14:29:09Z) - The Role of Legal Frameworks in Shaping Ethical Artificial Intelligence Use in Corporate Governance [0.0]
This article examines the evolving role of legal frameworks in shaping ethical artificial intelligence (AI) use in corporate governance.<n>It explores key legal and regulatory approaches aimed at promoting transparency, accountability, and fairness in corporate AI applications.
arXiv Detail & Related papers (2025-03-17T14:21:58Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
We develop a comprehensive framework designed to regulate AI technologies deployed in high-stakes domains such as defense, finance, healthcare, and education.<n>Our approach combines rigorous technical analysis, quantitative risk assessment, and normative evaluation to expose systemic vulnerabilities.
arXiv Detail & Related papers (2025-03-09T03:11:32Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
We argue that adapting existing processes for AI security reporting is doomed to fail due to fundamental shortcomings for the distinctive characteristics of AI systems.<n>Based on our proposal to address these shortcomings, we discuss an approach to AI security reporting and how the new AI paradigm, AI agents, will further reinforce the need for specialized AI security incident reporting advancements.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
Watermarking schemes embed hidden signals within AI-generated content to enable reliable detection.<n>Watermarks can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception.<n>This work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
arXiv Detail & Related papers (2024-11-27T16:22:33Z) - The Artificial Intelligence Act: critical overview [0.0]
This article provides a critical overview of the recently approved Artificial Intelligence Act.
It starts by presenting the main structure, objectives, and approach of Regulation (EU) 2024/1689.
The text concludes that even if the overall framework can be deemed adequate and balanced, the approach is so complex that it risks defeating its own purpose.
arXiv Detail & Related papers (2024-08-30T21:38:02Z) - An Open Knowledge Graph-Based Approach for Mapping Concepts and Requirements between the EU AI Act and International Standards [1.9142148274342772]
The EU's AI Act will shift the focus of such organizations toward conformance with the technical requirements for regulatory compliance.
This paper offers a simple and repeatable mechanism for mapping the terms and requirements relevant to normative statements in regulations and standards.
arXiv Detail & Related papers (2024-08-21T18:21:09Z) - Open Problems in Technical AI Governance [102.19067750759471]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.<n>This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.