論文の概要: Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings
- arxiv url: http://arxiv.org/abs/2401.15048v2
- Date: Wed, 28 Aug 2024 09:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 21:09:20.891546
- Title: Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings
- Title(参考訳): 認識できないが識別できない:保存埋め込みによる画像歪み
- Authors: Dmytro Zakharov, Oleksandr Kuznetsov, Emanuele Frontoni,
- Abstract要約: 本稿では,ニューラルネットワークモデルによる顔画像の識別性を保ちながら,目に対して認識不能な顔画像を描画する,革新的な画像変換手法を提案する。
提案手法は、様々な人工知能アプリケーションにおいて、視覚データを歪曲し、派生した特徴を近接に保つために使用することができる。
同一の認識精度を維持しつつ、画像内容が70%以上変化する歪みを構築することができることを示す。
- 参考スコア(独自算出の注目度): 22.338328674283062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometric authentication systems play a crucial role in modern security systems. However, maintaining the balance of privacy and integrity of stored biometrics derivative data while achieving high recognition accuracy is often challenging. Addressing this issue, we introduce an innovative image transformation technique that effectively renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models, which allows the distorted photo version to be stored for further verification. While initially intended for biometrics systems, the proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close. By experimenting with widely used datasets LFW and MNIST, we show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy. We compare our method with previously state-of-the-art approaches. We publically release the source code.
- Abstract(参考訳): 生体認証システムは、現代のセキュリティシステムにおいて重要な役割を果たす。
しかし、高い認識精度を達成しつつ、プライバシのバランスと保存されたバイオメトリックスのデータの整合性を維持することは、しばしば困難である。
この問題に対処するために、ニューラルネットワークモデルによる識別性を保ちながら、視覚に認識不能な顔画像を効果的にレンダリングする革新的な画像変換技術を導入し、歪んだ写真バージョンをさらなる検証のために保存する。
当初はバイオメトリックスシステムを目的としていたが、提案手法は様々な人工知能アプリケーションで視覚データを歪め、派生した特徴を近接に保つために使用することができる。
広く使われているLFWとMNISTを用いて実験することにより、画像内容が70%以上変化する歪みを、同一の認識精度を維持しながら構築できることが示される。
我々は,従来の最先端手法と比較した。
ソースコードを公開しています。
関連論文リスト
- Synthetic Forehead-creases Biometric Generation for Reliable User Verification [6.639785884921617]
本稿では,前頭葉画像データを一意性やリアリズムといった重要な特徴を維持しつつ合成する新しい枠組みを提案する。
Fr'echet Inception Distance (FID) と構造類似度指数測定 (SSIM) を用いて、生成された額部画像の多様性と現実性を評価する。
論文 参考訳(メタデータ) (2024-08-28T10:33:00Z) - Embedding Non-Distortive Cancelable Face Template Generation [22.80706131626207]
我々は、目では認識できないが、任意のカスタム埋め込みニューラルネットワークモデルで識別可能な顔画像を実現する革新的な画像歪み技術を導入する。
生体認証ネットワークの信頼性を,予測された同一性を変化させない最大画像歪みを判定することによって検証する。
論文 参考訳(メタデータ) (2024-02-04T15:39:18Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - Effective Adapter for Face Recognition in the Wild [72.75516495170199]
私たちは、画像が低品質で現実世界の歪みに悩まされる、野生の顔認識の課題に取り組みます。
従来のアプローチでは、劣化した画像や、顔の復元技術を使って強化された画像を直接訓練するが、効果がないことが証明された。
高品質な顔データセットで訓練された既存の顔認識モデルを強化するための効果的なアダプタを提案する。
論文 参考訳(メタデータ) (2023-12-04T08:55:46Z) - FACE-AUDITOR: Data Auditing in Facial Recognition Systems [24.082527732931677]
顔画像を扱うスケーラビリティと能力のために、ショットベースの顔認識システムが注目されている。
顔画像の誤使用を防止するために、簡単なアプローチとして、生の顔画像を共有する前に修正する方法がある。
そこで本研究では,FACE-AUDITORの完全ツールキットを提案する。このツールキットは,少数ショットベースの顔認識モデルに問い合わせ,ユーザの顔画像のいずれかがモデルのトレーニングに使用されているかどうかを判断する。
論文 参考訳(メタデータ) (2023-04-05T23:03:54Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
本研究では,修正データの利用性を確保しつつ,顔画像をシームレスに識別する新しいアルゴリズムであるDisguiseを紹介する。
本手法は, 難読化と非可逆性を最大化するために, 変分機構を用いて生成した合成物を用いて, 描写されたアイデンティティを抽出し置換することを含む。
提案手法を複数のデータセットを用いて広範に評価し,様々な下流タスクにおける従来の手法と比較して,高い非識別率と一貫性を示す。
論文 参考訳(メタデータ) (2023-03-23T13:50:46Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - HM4: Hidden Markov Model with Memory Management for Visual Place
Recognition [54.051025148533554]
自律運転における視覚的位置認識のための隠れマルコフモデルを提案する。
我々のアルゴリズムはHM$4$と呼ばれ、時間的ルックアヘッドを利用して、有望な候補画像をパッシブストレージとアクティブメモリ間で転送する。
固定被覆領域に対して一定の時間と空間推定が可能であることを示す。
論文 参考訳(メタデータ) (2020-11-01T08:49:24Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。