論文の概要: Fully Independent Communication in Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2401.15059v2
- Date: Tue, 26 Mar 2024 17:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 22:03:36.168549
- Title: Fully Independent Communication in Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習における完全独立通信
- Authors: Rafael Pina, Varuna De Silva, Corentin Artaud, Xiaolan Liu,
- Abstract要約: MARL(Multi-Agent Reinforcement Learning)は、マルチエージェントシステム分野における幅広い研究領域である。
パラメータを共有しないMARLの独立学習者がいかにコミュニケーションできるかを検討する。
この結果から, 独立エージェントは, 課題にも拘わらず, コミュニケーション戦略を学習できることが示唆された。
- 参考スコア(独自算出の注目度): 4.470370168359807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Reinforcement Learning (MARL) comprises a broad area of research within the field of multi-agent systems. Several recent works have focused specifically on the study of communication approaches in MARL. While multiple communication methods have been proposed, these might still be too complex and not easily transferable to more practical contexts. One of the reasons for that is due to the use of the famous parameter sharing trick. In this paper, we investigate how independent learners in MARL that do not share parameters can communicate. We demonstrate that this setting might incur into some problems, to which we propose a new learning scheme as a solution. Our results show that, despite the challenges, independent agents can still learn communication strategies following our method. Additionally, we use this method to investigate how communication in MARL is affected by different network capacities, both for sharing and not sharing parameters. We observe that communication may not always be needed and that the chosen agent network sizes need to be considered when used together with communication in order to achieve efficient learning.
- Abstract(参考訳): MARL(Multi-Agent Reinforcement Learning)は、マルチエージェントシステム分野における幅広い研究領域である。
近年のいくつかの研究は、MARLにおける通信手法の研究に焦点をあてている。
複数の通信方式が提案されているが、これらは複雑すぎ、より実践的な文脈に容易に転送できない。
その原因の1つは、有名なパラメータ共有トリックの使用である。
本稿では,パラメータを共有しないMARLの独立学習者がいかにコミュニケーションできるかを検討する。
我々は,この設定がいくつかの問題を引き起こす可能性を実証し,新しい学習手法を解法として提案する。
この結果から, 独立エージェントは, 課題にも拘わらず, コミュニケーション戦略を学習できることが示唆された。
さらに,本手法を用いて,MARLにおける通信が,パラメータの共有と共有の両面で異なるネットワーク能力にどのように影響するかを検討する。
我々は,コミュニケーションが必ずしも必要ではない場合や,効率的な学習を実現するために,選択したエージェントネットワークサイズをコミュニケーションと併用する場合に考慮する必要があることを観察する。
関連論文リスト
- Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
本稿では,自然言語を用いたコミュニケーション関連タスクを解くための,カスタマイズされたコミュニケーション知識とツールを備えたマルチエージェントシステムを提案する。
セマンティック通信システムの設計により,提案方式の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-13T02:35:57Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
交通信号制御(TSC)は、インテリジェント交通システムにおいて難しい問題である。
大規模TSCのための通信ベースのMARLフレームワークを提案する。
私たちのフレームワークでは、各エージェントがメッセージのどの部分を誰に"送信"するかを指示する通信ポリシーを学習することができます。
論文 参考訳(メタデータ) (2023-10-03T21:06:51Z) - An In-Depth Analysis of Discretization Methods for Communication
Learning using Backpropagation with Multi-Agent Reinforcement Learning [0.0]
本稿では,最先端の離散化手法と新しいアプローチを比較した。
本稿では,DIALとCOMAに基づくコミュニケーション学習手法であるCOMA-DIALについて述べる。
本報告では,ST-DRU法は, 異なる環境における識別方法のすべてにおいて, 最適な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-08-09T13:13:19Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
MARL(Multi-Agent Reinforcement Learning)では、エージェントが直接通信できる特別なチャンネルがしばしば導入される。
本稿では,エージェントの集団的性能を向上させるために,エージェントが提供した信号の伝達と解釈を学習する,インテリジェントなファシリテータを通じてエージェントがコミュニケーションする手法を提案する。
論文 参考訳(メタデータ) (2022-05-21T14:11:33Z) - Collaborative Visual Navigation [69.20264563368762]
マルチエージェント視覚ナビゲーション(MAVN)のための大規模3次元データセットCollaVNを提案する。
様々なMAVN変種を探索し、この問題をより一般化する。
メモリ拡張通信フレームワークを提案する。各エージェントには、通信情報を永続的に保存するプライベートな外部メモリが備わっている。
論文 参考訳(メタデータ) (2021-07-02T15:48:16Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - Correcting Experience Replay for Multi-Agent Communication [18.12281605882891]
マルチエージェント強化学習(MARL)を用いたコミュニケーション学習の課題について考察する。
一般的なアプローチは、リプレイバッファからサンプリングされたデータを使って、政治外を学ぶことである。
MARLにより誘導される観測通信の非定常性を考慮した「通信補正」を導入する。
論文 参考訳(メタデータ) (2020-10-02T20:49:24Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
多くの現実世界の問題は、複数の自律エージェントの調整を必要とする。
最近の研究は、複雑なマルチエージェント協調を可能にする明示的なコミュニケーション戦略を学ぶためのグラフニューラルネットワーク(GNN)の約束を示している。
一つの利己的なエージェントが高度に操作的なコミュニケーション戦略を学習し、協調的なエージェントチームを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-08-06T12:48:08Z) - Networked Multi-Agent Reinforcement Learning with Emergent Communication [18.47483427884452]
MARL(Multi-Agent Reinforcement Learning)法は,他の学習エージェントの存在下で活動するエージェントに対して最適なポリシーを求める。
コーディネートするひとつの方法は、相互通信を学ぶことです。
エージェントは共通のタスクを実行するために学習しながら言語を開発することができるか?
論文 参考訳(メタデータ) (2020-04-06T16:13:23Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。