論文の概要: Scalable Glacier Mapping using Deep Learning and Open Earth Observation Data Matches the Accuracy of Manual Delineation
- arxiv url: http://arxiv.org/abs/2401.15113v3
- Date: Wed, 4 Sep 2024 10:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 04:11:38.708587
- Title: Scalable Glacier Mapping using Deep Learning and Open Earth Observation Data Matches the Accuracy of Manual Delineation
- Title(参考訳): 深層学習とオープンアース観測データを用いたスケーラブル氷河マッピング
- Authors: Konstantin A. Maslov, Claudio Persello, Thomas Schellenberger, Alfred Stein,
- Abstract要約: Glacier-VisionTransformer-U-Net (GlaViTU) は畳み込み変換型ディープラーニングモデルである。
合成開口レーダデータ、すなわち後方散乱と干渉コヒーレンスを追加することで、利用可能なすべての領域の精度が向上する。
世界中の氷河の9%をカバーするベンチマークデータセットをリリースしました。
- 参考スコア(独自算出の注目度): 0.718723384367814
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate global glacier mapping is critical for understanding climate change impacts. Despite its importance, automated glacier mapping at a global scale remains largely unexplored. Here we address this gap and propose Glacier-VisionTransformer-U-Net (GlaViTU), a convolutional-transformer deep learning model, and five strategies for multitemporal global-scale glacier mapping using open satellite imagery. Assessing the spatial, temporal and cross-sensor generalisation shows that our best strategy achieves intersection over union >0.85 on previously unobserved images in most cases, which drops to >0.75 for debris-rich areas such as High-Mountain Asia and increases to >0.90 for regions dominated by clean ice. A comparative validation against human expert uncertainties in terms of area and distance deviations underscores GlaViTU performance, approaching or matching expert-level delineation. Adding synthetic aperture radar data, namely, backscatter and interferometric coherence, increases the accuracy in all regions where available. The calibrated confidence for glacier extents is reported making the predictions more reliable and interpretable. We also release a benchmark dataset that covers 9% of glaciers worldwide. Our results support efforts towards automated multitemporal and global glacier mapping.
- Abstract(参考訳): 正確な地球規模の氷河マッピングは、気候変動の影響を理解するために重要である。
その重要性にもかかわらず、世界規模での自動氷河マッピングはほとんど未調査のままである。
本稿では、このギャップに対処し、畳み込み変換型ディープラーニングモデルであるGlaViTU(GlaViTU)を提案する。
空間的, 時間的, クロスセンサーの一般化を評価することで, 従来観測されていなかった画像に対して, 我々の最善策は >0.85 の団結を達成し, 高山アジアなどの破片の多い地域では >0.75 まで低下し, クリーンアイスが支配する地域では >0.90 まで上昇することを示す。
面積と距離の偏差の点での人間の専門家の不確実性に対する比較検証は、GlaViTUのパフォーマンス、アプローチ、あるいは専門家レベルのデラインの整合性を強調している。
合成開口レーダデータ、すなわち後方散乱と干渉コヒーレンスを追加することで、利用可能なすべての領域の精度が向上する。
氷河の度合いの調整された信頼性が報告され、予測はより信頼性が高く解釈可能である。
また、世界中の氷河の9%をカバーするベンチマークデータセットもリリースしました。
本研究は, 自動多時期・グローバル氷河マッピングへの取り組みを支援する。
関連論文リスト
- Multi-Sensor Deep Learning for Glacier Mapping [0.0]
氷床の外の氷河は、海面上昇、水資源管理、自然災害、生物多様性、観光に影響を及ぼすことで、我々の社会において重要な役割を担っている。
衛星ベースの氷河マッピングアプリケーションは、歴史的に主に手動および半自動検出法に依存してきた。
この章では、マルチセンサーのリモートセンシングデータとディープラーニングを組み合わせることで、氷河をより正確に表現し、時間的変化を検出する方法についてレビューする。
論文 参考訳(メタデータ) (2024-09-18T14:51:36Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - AMD-HookNet for Glacier Front Segmentation [17.60067480799222]
氷河の開削前位置の変化に関する知識は 氷河の状態を評価する上で重要です
深層学習に基づく手法は、光学衛星画像やレーダー衛星画像から氷河の前部線を削る大きな可能性を示している。
本研究では,新しい氷河養生フロントセグメンテーションフレームワークであるAttention-Multi-hooking-Deep-supervision HookNetを提案する。
論文 参考訳(メタデータ) (2023-02-06T12:39:40Z) - Boundary Aware U-Net for Glacier Segmentation [1.1715858161748574]
大規模で空間的に重複しないクリーンな氷河氷と破片で覆われた氷河氷の分断のために,U-Netの修正版を提案する。
破砕した氷河氷のセグメンテーション性能を向上させるために, 新たな自己学習境界認識損失を導入する。
我々は、ランドサット7号の画像から、赤、短波赤外、近赤外線の帯が、破片で覆われた氷河の分断に最も寄与していると結論付けた。
論文 参考訳(メタデータ) (2023-01-26T22:58:23Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - GlacierNet2: A Hybrid Multi-Model Learning Architecture for Alpine
Glacier Mapping [5.953569982292301]
氷河の幾何学に関するテーマ的かつ定量的な情報は、気候変動に対する氷河の強制と感受性を理解するのに不可欠である。
デブリ被覆氷河(DCG)の正確なマッピングは、スペクトル情報と従来の機械学習技術によって難しいことが知られている。
本研究の目的は、畳み込みニューラルネットワークセグメンテーションモデルを利用して、地域のDCGアブレーションゾーンを正確に概説する、先進的なディープラーニングベースのアプローチであるGlacierNetを改善することである。
論文 参考訳(メタデータ) (2022-04-06T14:39:34Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya [54.12023102155757]
氷河マッピングは、hkh領域における生態モニタリングの鍵となる。
気候変動は、氷河生態系の健康に依存している個人にリスクを与える。
本稿では,氷河に着目した環境モニタリングを支援する機械学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-09T12:48:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。