論文の概要: Efficient Online Crowdsourcing with Complex Annotations
- arxiv url: http://arxiv.org/abs/2401.15116v1
- Date: Thu, 25 Jan 2024 22:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 19:49:11.717963
- Title: Efficient Online Crowdsourcing with Complex Annotations
- Title(参考訳): 複雑なアノテーションによる効率的なオンラインクラウドソーシング
- Authors: Reshef Meir, Viet-An Nguyen, Xu Chen, Jagdish Ramakrishnan, Udi
Weinsberg
- Abstract要約: 本稿では,オンラインのクラウドソーシング環境において機能する汎用アノテーション(バウンディングボックスや分類パスなど)の新たなアプローチを提案する。
我々は、ラベルの予測平均類似性が、報告されたラベルの正確性において線形であることを証明した。
これにより、報告されたラベルの精度を幅広いシナリオで推測できる。
- 参考スコア(独自算出の注目度): 15.063652909543887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crowdsourcing platforms use various truth discovery algorithms to aggregate
annotations from multiple labelers. In an online setting, however, the main
challenge is to decide whether to ask for more annotations for each item to
efficiently trade off cost (i.e., the number of annotations) for quality of the
aggregated annotations. In this paper, we propose a novel approach for general
complex annotation (such as bounding boxes and taxonomy paths), that works in
an online crowdsourcing setting. We prove that the expected average similarity
of a labeler is linear in their accuracy \emph{conditional on the reported
label}. This enables us to infer reported label accuracy in a broad range of
scenarios. We conduct extensive evaluations on real-world crowdsourcing data
from Meta and show the effectiveness of our proposed online algorithms in
improving the cost-quality trade-off.
- Abstract(参考訳): クラウドソーシングプラットフォームは、さまざまな真実発見アルゴリズムを使用して、複数のラベルからのアノテーションを集約する。
しかし、オンライン環境では、集約されたアノテーションの品質のためにコスト(つまり、アノテーションの数)を効率的にトレードオフするために、各項目により多くのアノテーションを求めるかどうかを決めることが主な課題である。
本稿では,オンラインのクラウドソーシング環境で機能する,一般的な複雑なアノテーション(バウンディングボックスや分類パスなど)に対する新しいアプローチを提案する。
ラベルの予測平均類似性は,報告されたラベル上でのemph{ Conditional}の精度で線形であることを示す。
これにより、報告されたラベルの精度を幅広いシナリオで推測できる。
metaから実世界のクラウドソーシングデータを広範囲に評価し、提案するオンラインアルゴリズムがコスト品質のトレードオフを改善する効果を示す。
関連論文リスト
- Coupled Confusion Correction: Learning from Crowds with Sparse
Annotations [43.94012824749425]
2つのモデルで学習した融合行列は、他のモデルの蒸留データによって補正することができる。
我々は、類似の専門知識を共有するアノテータグループの'をクラスタ化し、それらの混乱行列を一緒に修正できるようにします。
論文 参考訳(メタデータ) (2023-12-12T14:47:26Z) - IDEAL: Influence-Driven Selective Annotations Empower In-Context
Learners in Large Language Models [66.32043210237768]
本稿では,影響駆動型選択的アノテーション手法を提案する。
アノテーションのコストを最小限に抑えつつ、コンテキスト内サンプルの品質を向上させることを目的としている。
様々なベンチマークで提案手法の優位性を確認する実験を行った。
論文 参考訳(メタデータ) (2023-10-16T22:53:54Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
監視された分類アルゴリズムは、世界中の多くの現実の問題を解決するために使用される。
残念なことに、多くのタスクに対して良質なアノテーションを取得することは、実際に行うには不可能か、あるいはコストがかかりすぎます。
サンプル空間のラベルのない部分を利用する2つの新しいアノテーション統一アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-25T19:40:41Z) - Multi-View Knowledge Distillation from Crowd Annotations for
Out-of-Domain Generalization [53.24606510691877]
本稿では,既存の手法による分布を集約することで,クラウドアノテーションからソフトラベルを取得する新しい手法を提案する。
これらのアグリゲーション手法は、ドメイン外テストセット上の4つのNLPタスクにおいて、最も一貫したパフォーマンスをもたらすことを実証する。
論文 参考訳(メタデータ) (2022-12-19T12:40:18Z) - Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation [107.72926721837726]
粗いアノテーションは、セマンティックセグメンテーションモデルをトレーニングするための、低コストで非常に効果的な代替手段である。
粗い注釈付きデータの未ラベル領域の擬似ラベルを生成する粗大な自己学習フレームワークを提案する。
提案手法は,アノテーションの予算のごく一部で完全に注釈付けされたデータに匹敵する性能が得られるため,大幅な性能向上とアノテーションのコストトレードオフを実現する。
論文 参考訳(メタデータ) (2022-12-15T15:43:42Z) - Truth Discovery in Sequence Labels from Crowds [12.181422057560201]
Amazon Mechanical Turk (AMT)のようなクラウドソーシングプラットフォームは、この目的のためにデプロイされている。
アノテーションアグリゲーションにおける既存の文献は、アノテーションは独立しており、シーケンシャルなラベルアグリゲーションタスクを扱う際の課題に直面していると仮定している。
逐次ラベリングタスクにおいて,作業者が提供するアノテーションを用いて,真理ラベルを推測する最適化手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T19:12:13Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific
Perturbations for Tabular Data [8.276156981100364]
コティーチング手法は、ノイズの多いラベルによるコンピュータビジョン問題に対する有望な改善を示している。
我々のモデルであるcrowdteacherは、入力空間モデルのロバスト性がノイズラベルの分類器の摂動を改善することができるという考えを採用している。
合成データと実データの両方でCrowdTeacherを用いて予測能力の向上を示す。
論文 参考訳(メタデータ) (2021-03-31T15:09:38Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインデータセットで訓練されたモデルを、さらなるアノテーションなしでターゲットドメインデータセットに適応することを目的としている。
最も成功したUDA-ReIDアプローチは、クラスタリングに基づく擬似ラベル予測と表現学習を組み合わせて、2つのステップを交互に実行する。
疑似ラベル予測と表現学習のオンラインインタラクションと相互促進を可能にするグループ認識ラベル転送(GLT)アルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-03-23T07:57:39Z) - OpinionRank: Extracting Ground Truth Labels from Unreliable Expert
Opinions with Graph-Based Spectral Ranking [2.1930130356902207]
クラウドソーシングは、分散ラベルコレクションを実行するための、ポピュラーで安価で効率的なデータマイニングソリューションとして登場した。
我々は、クラウドソースアノテーションを信頼できるラベルに統合するための、モデルフリーで解釈可能なグラフベースのスペクトルアルゴリズムであるOpinionRankを提案する。
実験の結果,より高パラメータ化アルゴリズムと比較した場合,OpinionRankが好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-02-11T08:12:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。