Chaotic Encryption for 10-Gb Ethernet Optical Links
- URL: http://arxiv.org/abs/2401.15138v1
- Date: Fri, 26 Jan 2024 18:08:19 GMT
- Title: Chaotic Encryption for 10-Gb Ethernet Optical Links
- Authors: Adrián Pérez-Resa, Miguel Garcia-Bosque, Carlos Sánchez-Azqueta, Santiago Celma,
- Abstract summary: Ethernet traffic has been encrypted, transmitted, and decrypted over a multimode optical link.
No overhead is introduced during encryption, getting no losses in the total throughput.
- Score: 0.7499722271664144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a new physical layer encryption method for optical 10-Gb Ethernet links is proposed. Necessary modifications to introduce encryption in Ethernet 10GBase-R standard have been considered. This security enhancement has consisted of a symmetric streaming encryption of the 64b/66b data flow at physical coding sublayer level thanks to two keystream generators based on a chaotic algorithm. The overall system has been implemented and tested in a field programmable gate array. Ethernet traffic has been encrypted, transmitted, and decrypted over a multimode optical link. Experimental results are analyzed concluding that it is possible to cipher traffic at this level and hide the complete Ethernet traffic pattern from any passive eavesdropper. In addition, no overhead is introduced during encryption, getting no losses in the total throughput.
Related papers
- Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.
PLD combines PLS with deception technologies to actively counteract wiretapping attempts.
We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
We propose CodeChameleon, a novel jailbreak framework based on personalized encryption tactics.
We conduct extensive experiments on 7 Large Language Models, achieving state-of-the-art average Attack Success Rate (ASR)
Remarkably, our method achieves an 86.6% ASR on GPT-4-1106.
arXiv Detail & Related papers (2024-02-26T16:35:59Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Chaotic Encryption Applied to Optical Ethernet in Industrial Control Systems [0.7499722271664144]
Ethernet has become an alternative technology for the field buses traditionally used in industrial control systems and distributed measurement systems.
Due to the absence of a standard that provides security at the physical layer of optical Ethernet links, the main motivation of this paper is to introduce encryption in Ethernet 1000Base-X standard.
arXiv Detail & Related papers (2024-01-26T18:05:29Z) - Physical Layer Encryption for Industrial Ethernet in Gigabit Optical Links [0.5624791703748108]
New encryption method for high speed optical communications suitable for such kind of networks is proposed.
New encryption method consists of a symmetric streaming encryption of the 8b/10b data flow at PCS (Physical Coding Sublayer) level.
arXiv Detail & Related papers (2024-01-26T18:01:59Z) - Exact Homomorphic Encryption [0.0]
This article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption.
Two fundamental traits of quantum gates, invertibility and the noncommutativity, establish the success of EHE.
arXiv Detail & Related papers (2024-01-17T07:48:52Z) - Grain-128PLE: Generic Physical-Layer Encryption for IoT Networks [6.515605001492591]
Grain-128PLE is a lightweight physical layer encryption scheme that is derived from the Grain-128AEAD v2 stream cipher.
The design of Grain-128PLE maintains the structure of the main building blocks of the original Grain-128AEAD v2 stream cipher.
arXiv Detail & Related papers (2023-09-27T10:48:52Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Quantum Encryption in Phase Space for Coherent Optical Communications [0.0]
Quantum Encryption in Phase Space (QEPS) is a physical layer encryption method to secure data over the optical fiber.
We study two preventative measures for different modulation formats which will prevent an eavesdropper from obtaining any data.
arXiv Detail & Related papers (2023-01-15T15:08:53Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - On Sparsifying Encoder Outputs in Sequence-to-Sequence Models [90.58793284654692]
We take Transformer as the testbed and introduce a layer of gates in-between the encoder and the decoder.
The gates are regularized using the expected value of the sparsity-inducing L0penalty.
We investigate the effects of this sparsification on two machine translation and two summarization tasks.
arXiv Detail & Related papers (2020-04-24T16:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.