Quantum Encryption in Phase Space for Coherent Optical Communications
- URL: http://arxiv.org/abs/2301.06113v1
- Date: Sun, 15 Jan 2023 15:08:53 GMT
- Title: Quantum Encryption in Phase Space for Coherent Optical Communications
- Authors: Adrian Chan, Mostafa Khalil, Kh Arif Shahriar, David V. Plant,
Lawrence R. Chen, Randy Kuang
- Abstract summary: Quantum Encryption in Phase Space (QEPS) is a physical layer encryption method to secure data over the optical fiber.
We study two preventative measures for different modulation formats which will prevent an eavesdropper from obtaining any data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical layer attacks on communication networks are one of the weakest
reinforced areas of the network, allowing attackers to overcome security when
proper safeguards are not put into place. Here, we present our solution or
Quantum Encryption in Phase Space (QEPS), a physical layer encryption method to
secure data over the optical fiber, based on our novel round-trip
Coherent-based Two-Field Quantum Key Distribution (CTF-QKD) scheme. We perform
a theoretical study through simulation and provide an experimental
demonstration. The same encryption is used for QEPS as CTF-QKD but achieved
through a pre-shared key and one-directional transmission design. QEPS is
uniquely different from traditional technology where encryption is performed at
the optical domain with coherent states by applying a quantum phase-shifting
operator. The pre-shared secret is used to seed a deterministic random number
generator and control the phase modulator at the transmitter for encryption and
at the receiver for decryption. Using commercially available simulation
software, we study two preventative measures for different modulation formats
which will prevent an eavesdropper from obtaining any data. QEPS demonstrates
that it is secure against tapping attacks when attackers have no information of
the phase modulator and pre-shared key. Finally, an experiment with commercial
components demonstrates QEPS system integrability.
Related papers
- Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights [2.522402937703098]
QUIC is a new network protocol standardized in 2021.
It was designed to replace the TCP/TLS stack and is based on UDP.
This paper presents a detailed evaluation of the impact of cryptography on QUIC performance.
arXiv Detail & Related papers (2024-05-15T11:27:28Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Modulation leakage-free continuous-variable quantum key distribution [1.8268488712787332]
Continuous-variable (CV) QKD based on coherent states is an attractive scheme for secure communication.
This work is a step towards protecting CVQKD systems against practical imperfections of physical devices and operational limitations without performance degradation.
arXiv Detail & Related papers (2022-05-15T10:07:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Agile and versatile quantum communication: signatures and secrets [0.7980685978549763]
We demonstrate two quantum cryptographic protocols, quantum digital signatures (QDS) and quantum secret sharing (QSS) on the same hardware sender and receiver platform.
This is the first proof-of-principle demonstration of an agile and versatile quantum communication system.
arXiv Detail & Related papers (2020-01-27T21:11:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.