Optimal Sparse Survival Trees
- URL: http://arxiv.org/abs/2401.15330v3
- Date: Wed, 22 May 2024 21:28:03 GMT
- Title: Optimal Sparse Survival Trees
- Authors: Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin,
- Abstract summary: Tree-based methods have been widely adopted for survival analysis due to their appealing interpretablility and their ability to capture complex relationships.
We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models.
- Score: 23.23106906682907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability is crucial for doctors, hospitals, pharmaceutical companies and biotechnology corporations to analyze and make decisions for high stakes problems that involve human health. Tree-based methods have been widely adopted for survival analysis due to their appealing interpretablility and their ability to capture complex relationships. However, most existing methods to produce survival trees rely on heuristic (or greedy) algorithms, which risk producing sub-optimal models. We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models, frequently in only a few seconds.
Related papers
- HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
HACSurv is a survival analysis method that learns structures and cause-specific survival functions from data with competing risks.
By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions.
arXiv Detail & Related papers (2024-10-19T18:52:18Z) - Optimal Survival Trees: A Dynamic Programming Approach [8.815461200424776]
Survival analysis studies and predicts the time of death, or other singular unrepeated events, based on historical data.
We use dynamic programming to provide the first survival tree method with optimality guarantees.
arXiv Detail & Related papers (2024-01-09T11:01:11Z) - NSOTree: Neural Survival Oblique Tree [0.21756081703275998]
Survival analysis is a statistical method employed to scrutinize the duration until a specific event of interest transpires.
Deep learning-based methods have dominated this field due to their representational capacity and state-of-the-art performance.
In this paper, we leverage the strengths of both neural networks and tree-based methods, capitalizing on their ability to approximate intricate functions while maintaining interpretability.
arXiv Detail & Related papers (2023-09-25T02:14:15Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
We propose a tree-based method, termed as Social Interpretable Tree (SIT), to address this multi-modal prediction task.
A path in the tree from the root to leaf represents an individual possible future trajectory.
Despite the hand-crafted tree, the experimental results on ETH-UCY and Stanford Drone datasets demonstrate that our method is capable of matching or exceeding the performance of state-of-the-art methods.
arXiv Detail & Related papers (2022-05-26T12:18:44Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Genetic Adversarial Training of Decision Trees [6.85316573653194]
We put forward a novel learning methodology for ensembles of decision trees based on a genetic algorithm which is able to train a decision tree for maximizing its accuracy and its robustness to adversarial perturbations.
We implemented this genetic adversarial training algorithm in a tool called Meta-Silvae (MS) and we experimentally evaluated it on some reference datasets used in adversarial training.
arXiv Detail & Related papers (2020-12-21T14:05:57Z) - Optimal Survival Trees [2.7910505923792637]
We present a new Optimal Survival Trees algorithm that leverages mixed-integer optimization (MIO) and local search techniques to generate globally optimized survival tree models.
We demonstrate that the algorithm improves on the accuracy of existing survival tree methods, particularly in large datasets.
arXiv Detail & Related papers (2020-12-08T09:00:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - ENTMOOT: A Framework for Optimization over Ensemble Tree Models [57.98561336670884]
ENTMOOT is a framework for integrating tree models into larger optimization problems.
We show how ENTMOOT allows a simple integration of tree models into decision-making and black-box optimization.
arXiv Detail & Related papers (2020-03-10T14:34:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.