Decision Tree Induction Through LLMs via Semantically-Aware Evolution
- URL: http://arxiv.org/abs/2503.14217v1
- Date: Tue, 18 Mar 2025 12:52:03 GMT
- Title: Decision Tree Induction Through LLMs via Semantically-Aware Evolution
- Authors: Tennison Liu, Nicolas Huynh, Mihaela van der Schaar,
- Abstract summary: We propose an evolutionary optimization method for decision tree induction based on genetic programming (GP)<n>Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the algorithm.<n>This is operationalized through novel genetic operators that work with structured natural language prompts.
- Score: 53.0367886783772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision trees are a crucial class of models offering robust predictive performance and inherent interpretability across various domains, including healthcare, finance, and logistics. However, current tree induction methods often face limitations such as suboptimal solutions from greedy methods or prohibitive computational costs and limited applicability of exact optimization approaches. To address these challenges, we propose an evolutionary optimization method for decision tree induction based on genetic programming (GP). Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the optimization algorithm. To this end, we introduce $\texttt{LLEGO}$, a framework that incorporates semantic priors into genetic search operators through the use of Large Language Models (LLMs), thereby enhancing search efficiency and targeting regions of the search space that yield decision trees with superior generalization performance. This is operationalized through novel genetic operators that work with structured natural language prompts, effectively utilizing LLMs as conditional generative models and sources of semantic knowledge. Specifically, we introduce $\textit{fitness-guided}$ crossover to exploit high-performing regions, and $\textit{diversity-guided}$ mutation for efficient global exploration of the search space. These operators are controlled by corresponding hyperparameters that enable a more nuanced balance between exploration and exploitation across the search space. Empirically, we demonstrate across various benchmarks that $\texttt{LLEGO}$ evolves superior-performing trees compared to existing tree induction methods, and exhibits significantly more efficient search performance compared to conventional GP approaches.
Related papers
- Policy Guided Tree Search for Enhanced LLM Reasoning [3.090041654375235]
Policy-Guided Tree Search (PGTS) is a framework that combines reinforcement learning with structured tree exploration to efficiently navigate reasoning paths.
Our key innovation is a learned policy that dynamically decides between expanding, branching, backtracking, or terminating exploration, eliminating the need for manuals or exhaustive search.
arXiv Detail & Related papers (2025-02-04T22:08:20Z) - Language-Based Bayesian Optimization Research Assistant (BORA) [0.0]
Contextualizing domain knowledge is a powerful approach to guide searches for fruitful regions.<n>Here, we propose use of Language Models (LLMs) for contextualizing search optimization.
arXiv Detail & Related papers (2025-01-27T17:20:04Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees
with Continuous Features [5.663538370244174]
We present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees.
Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets.
arXiv Detail & Related papers (2022-06-23T17:19:29Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.