Large Language Model for Vulnerability Detection: Emerging Results and
Future Directions
- URL: http://arxiv.org/abs/2401.15468v1
- Date: Sat, 27 Jan 2024 17:39:36 GMT
- Title: Large Language Model for Vulnerability Detection: Emerging Results and
Future Directions
- Authors: Xin Zhou, Ting Zhang, David Lo
- Abstract summary: Previous learning-based vulnerability detection methods relied on either medium-sized pre-trained models or smaller neural networks from scratch.
Recent advancements in Large Pre-Trained Language Models (LLMs) have showcased remarkable few-shot learning capabilities in various tasks.
- Score: 15.981132063061661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous learning-based vulnerability detection methods relied on either
medium-sized pre-trained models or smaller neural networks from scratch. Recent
advancements in Large Pre-Trained Language Models (LLMs) have showcased
remarkable few-shot learning capabilities in various tasks. However, the
effectiveness of LLMs in detecting software vulnerabilities is largely
unexplored. This paper aims to bridge this gap by exploring how LLMs perform
with various prompts, particularly focusing on two state-of-the-art LLMs:
GPT-3.5 and GPT-4. Our experimental results showed that GPT-3.5 achieves
competitive performance with the prior state-of-the-art vulnerability detection
approach and GPT-4 consistently outperformed the state-of-the-art.
Related papers
- Large Language Models for In-File Vulnerability Localization Can Be "Lost in the End" [6.6389862916575275]
New development practice requires researchers to investigate whether commonly used LLMs can effectively analyze large file-sized inputs.
This paper is to evaluate the effectiveness of several state-of-the-art chat-based LLMs, including the GPT models, in detecting in-file vulnerabilities.
arXiv Detail & Related papers (2025-02-09T14:51:15Z) - Investigating Large Language Models for Code Vulnerability Detection: An Experimental Study [20.06503053066937]
Code vulnerability detection is essential for addressing and preventing system security issues.
Previous learning-based vulnerability detection methods rely on either fine-tuning medium-size sequence models or training smaller neural networks from scratch.
Recent advancements in large pre-trained language models (LLMs) have showcased remarkable capabilities in various code intelligence tasks.
arXiv Detail & Related papers (2024-12-24T08:20:29Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.
GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
LLMs in particular are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model.
We propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process.
arXiv Detail & Related papers (2024-07-29T09:55:34Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
We study the behavior of Large Language Models (LLMs) during continual pre-training.
We propose three effective strategies to enhance LLM performance within a fixed compute budget.
Our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget.
arXiv Detail & Related papers (2024-06-21T02:28:37Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z) - Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents [53.78782375511531]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.