論文の概要: Semantic Properties of cosine based bias scores for word embeddings
- arxiv url: http://arxiv.org/abs/2401.15499v1
- Date: Sat, 27 Jan 2024 20:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 18:03:39.078766
- Title: Semantic Properties of cosine based bias scores for word embeddings
- Title(参考訳): 単語埋め込みのためのコサインに基づくバイアススコアの意味的特性
- Authors: Sarah Schr\"oder, Alexander Schulz, Fabian Hinder and Barbara Hammer
- Abstract要約: 本稿では,バイアスの定量化に有効なバイアススコアの要件を提案する。
これらの要件について,コサインに基づくスコアを文献から分析する。
これらの結果は、バイアススコアの制限がアプリケーションケースに影響を及ぼすことを示す実験で裏付けられている。
- 参考スコア(独自算出の注目度): 52.13994416317707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plenty of works have brought social biases in language models to attention
and proposed methods to detect such biases. As a result, the literature
contains a great deal of different bias tests and scores, each introduced with
the premise to uncover yet more biases that other scores fail to detect. What
severely lacks in the literature, however, are comparative studies that analyse
such bias scores and help researchers to understand the benefits or limitations
of the existing methods. In this work, we aim to close this gap for cosine
based bias scores. By building on a geometric definition of bias, we propose
requirements for bias scores to be considered meaningful for quantifying
biases. Furthermore, we formally analyze cosine based scores from the
literature with regard to these requirements. We underline these findings with
experiments to show that the bias scores' limitations have an impact in the
application case.
- Abstract(参考訳): 多くの研究が言語モデルに社会的バイアスをもたらし、そのようなバイアスを検出する方法を提案した。
その結果、文献には多くの異なるバイアステストとスコアが含まれており、それぞれが他のスコアが検出できないバイアスを明らかにするために導入された。
しかし、文献にひどく欠けているのは、バイアススコアを分析し、研究者が既存の方法の利点や限界を理解するのに役立つ比較研究である。
本研究では,コサインに基づくバイアススコアのギャップを埋めることを目的としている。
バイアスの幾何学的定義を基礎として,バイアススコアがバイアスの定量化に有意であると考えられる要件を提案する。
さらに,これらの要件に関する文献から,コサインに基づくスコアを公式に分析する。
これらの結果は、バイアススコアの制限がアプリケーションケースに影響を及ぼすことを示す実験で裏付けられている。
関連論文リスト
- Bias in Language Models: Beyond Trick Tests and Toward RUTEd Evaluation [55.66090768926881]
本研究では,非テクスチャ化された「トリックテスト」と,現実的利用と有形効果に根ざした評価の対応について検討する。
本稿では,現在文献に適合している3つの非文脈評価と,長文コンテンツ生成に適用された3つの類似のRUTED評価を比較した。
トリックテストとRUTEd評価の対応は見つからなかった。
論文 参考訳(メタデータ) (2024-02-20T01:49:15Z) - This Prompt is Measuring <MASK>: Evaluating Bias Evaluation in Language
Models [12.214260053244871]
言語モデルのバイアスを評価するためにプロンプトとテンプレートを使用する作業の本体を分析します。
我々は、バイアステストが測定する目的を捉える属性の分類を作成するために、測定モデリングフレームワークを設計する。
我々の分析は、フィールドが測定できる可能性のあるバイアスタイプの範囲を照らし、まだ調査されていないタイプを明らかにします。
論文 参考訳(メタデータ) (2023-05-22T06:28:48Z) - Mind Your Bias: A Critical Review of Bias Detection Methods for
Contextual Language Models [2.170169149901781]
文脈言語モデルに対する厳密な分析とバイアス検出手法の比較を行う。
私たちの結果は、マイナーな設計と実装の決定(またはエラー)が、導出バイアススコアに大きく、しばしば重大な影響を与えていることを示している。
論文 参考訳(メタデータ) (2022-11-15T19:27:54Z) - The Tail Wagging the Dog: Dataset Construction Biases of Social Bias
Benchmarks [75.58692290694452]
社会的偏見と、データセット構築時に選択された選択から生じる非社会的偏見を比較し、人間の目では識別できないかもしれない。
これらの浅い修正は、様々なモデルにまたがるバイアスの程度に驚くべき影響を及ぼす。
論文 参考訳(メタデータ) (2022-10-18T17:58:39Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in
Pretrained Language Models [2.567384209291337]
自然言語処理資源における偏見パターンの認識の高まりは、偏見と公平さを定量化するために多くの指標を動機付けてきた」。
本稿では,事前訓練された言語モデルの公平度指標に関する既存の文献を調査し,互換性を実験的に評価する。
その結果、多くの指標は互換性がなく、(i)テンプレート、(ii)属性とターゲット種子、(iii)埋め込みの選択に強く依存していることがわかった。
論文 参考訳(メタデータ) (2021-12-14T15:04:56Z) - Evaluating Metrics for Bias in Word Embeddings [44.14639209617701]
我々は、過去の研究の考えに基づいてバイアス定義を定式化し、バイアスメトリクスの条件を導出する。
そこで我々は,既存のメトリクスの欠点に対処する新しい計量であるhetを提案し,その振る舞いを数学的に証明する。
論文 参考訳(メタデータ) (2021-11-15T16:07:15Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。