ASCNet: Asymmetric Sampling Correction Network for Infrared Image Destriping
- URL: http://arxiv.org/abs/2401.15578v2
- Date: Tue, 4 Jun 2024 11:47:15 GMT
- Title: ASCNet: Asymmetric Sampling Correction Network for Infrared Image Destriping
- Authors: Shuai Yuan, Hanlin Qin, Xiang Yan, Shiqi Yang, Shuowen Yang, Naveed Akhtar,
- Abstract summary: We propose a novel infrared image destriping method called Asymmetric Sampling Correction Network (ASCNet)
Our ASCNet consists of three core elements: Residual Haar Discrete Wavelet Transform (RHDWT), Pixel Shuffle (PS), and Column Non-uniformity Correction Module (CNCM)
- Score: 26.460122241870696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a real-world infrared imaging system, effectively learning a consistent stripe noise removal model is essential. Most existing destriping methods cannot precisely reconstruct images due to cross-level semantic gaps and insufficient characterization of the global column features. To tackle this problem, we propose a novel infrared image destriping method, called Asymmetric Sampling Correction Network (ASCNet), that can effectively capture global column relationships and embed them into a U-shaped framework, providing comprehensive discriminative representation and seamless semantic connectivity. Our ASCNet consists of three core elements: Residual Haar Discrete Wavelet Transform (RHDWT), Pixel Shuffle (PS), and Column Non-uniformity Correction Module (CNCM). Specifically, RHDWT is a novel downsampler that employs double-branch modeling to effectively integrate stripe-directional prior knowledge and data-driven semantic interaction to enrich the feature representation. Observing the semantic patterns crosstalk of stripe noise, PS is introduced as an upsampler to prevent excessive apriori decoding and performing semantic-bias-free image reconstruction. After each sampling, CNCM captures the column relationships in long-range dependencies. By incorporating column, spatial, and self-dependence information, CNCM well establishes a global context to distinguish stripes from the scene's vertical structures. Extensive experiments on synthetic data, real data, and infrared small target detection tasks demonstrate that the proposed method outperforms state-of-the-art single-image destriping methods both visually and quantitatively. Our code will be made publicly available at https://github.com/xdFai/ASCNet.
Related papers
- Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval [43.47770490199544]
Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption.
We introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations.
We also introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed.
arXiv Detail & Related papers (2024-05-01T15:19:54Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation [3.485615723221064]
FuseNet is a dual-stream framework for self-supervised semantic segmentation.
Cross-modal fusion technique extends the principles of CLIP by replacing textual data with augmented images.
experiments on skin lesion and lung segmentation datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T00:03:16Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Wavelet-based Unsupervised Label-to-Image Translation [9.339522647331334]
We propose a new Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised segmentation loss and whole image wavelet based discrimination.
We test our methodology on 3 challenging datasets and demonstrate its ability to bridge the performance gap between paired and unpaired models.
arXiv Detail & Related papers (2023-05-16T17:48:44Z) - Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation [21.950751953721817]
We propose a novel Bi-directional Fractal Cross Fusion Network (BiFCNet) for semantic segmentation.
We use RGB images with rich color features as input to our network in which the Fractal Cross Fusion module fuses RGB and depth data.
To reduce the cost of real data collection, we propose a data augmentation method based on an adversarial strategy.
arXiv Detail & Related papers (2023-05-05T03:21:55Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
We propose a novel spatial-separated curve rendering network (S$2$CRNet) for efficient and high-resolution image harmonization.
The proposed method reduces more than 90% parameters compared with previous methods.
Our method can work smoothly on higher resolution images in real-time which is more than 10$times$ faster than the existing methods.
arXiv Detail & Related papers (2021-09-13T07:20:16Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
We propose a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem.
Learning with grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations.
In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks.
arXiv Detail & Related papers (2021-02-24T08:57:32Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - Example-Guided Image Synthesis across Arbitrary Scenes using Masked
Spatial-Channel Attention and Self-Supervision [83.33283892171562]
Example-guided image synthesis has recently been attempted to synthesize an image from a semantic label map and an exemplary image.
In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically different from the given label map.
We propose an end-to-end network for joint global and local feature alignment and synthesis.
arXiv Detail & Related papers (2020-04-18T18:17:40Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.