FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2311.13069v1
- Date: Wed, 22 Nov 2023 00:03:16 GMT
- Title: FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation
- Authors: Amirhossein Kazerouni, Sanaz Karimijafarbigloo, Reza Azad, Yury
Velichko, Ulas Bagci, Dorit Merhof
- Abstract summary: FuseNet is a dual-stream framework for self-supervised semantic segmentation.
Cross-modal fusion technique extends the principles of CLIP by replacing textual data with augmented images.
experiments on skin lesion and lung segmentation datasets demonstrate the effectiveness of our method.
- Score: 3.485615723221064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation, a crucial task in computer vision, often relies on
labor-intensive and costly annotated datasets for training. In response to this
challenge, we introduce FuseNet, a dual-stream framework for self-supervised
semantic segmentation that eliminates the need for manual annotation. FuseNet
leverages the shared semantic dependencies between the original and augmented
images to create a clustering space, effectively assigning pixels to
semantically related clusters, and ultimately generating the segmentation map.
Additionally, FuseNet incorporates a cross-modal fusion technique that extends
the principles of CLIP by replacing textual data with augmented images. This
approach enables the model to learn complex visual representations, enhancing
robustness against variations similar to CLIP's text invariance. To further
improve edge alignment and spatial consistency between neighboring pixels, we
introduce an edge refinement loss. This loss function considers edge
information to enhance spatial coherence, facilitating the grouping of nearby
pixels with similar visual features. Extensive experiments on skin lesion and
lung segmentation datasets demonstrate the effectiveness of our method.
\href{https://github.com/xmindflow/FuseNet}{Codebase.}
Related papers
- InvSeg: Test-Time Prompt Inversion for Semantic Segmentation [33.60580908728705]
InvSeg is a test-time prompt inversion method for semantic segmentation.
We introduce Contrastive Soft Clustering to align masks with the image's structure information.
InvSeg learns context-rich text prompts in embedding space and achieves accurate semantic alignment across modalities.
arXiv Detail & Related papers (2024-10-15T10:20:31Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner
for Open-World Semantic Segmentation [110.09800389100599]
We propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation.
Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text.
With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability.
arXiv Detail & Related papers (2023-08-09T09:35:16Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - EAA-Net: Rethinking the Autoencoder Architecture with Intra-class
Features for Medical Image Segmentation [4.777011444412729]
We propose a light-weight end-to-end segmentation framework based on multi-task learning, termed Edge Attention autoencoder Network (EAA-Net)
Our approach not only utilizes the segmentation network to obtain inter-class features, but also applies the reconstruction network to extract intra-class features among the foregrounds.
Experimental results show that our method performs well in medical image segmentation tasks.
arXiv Detail & Related papers (2022-08-19T07:42:55Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Maximize the Exploration of Congeneric Semantics for Weakly Supervised
Semantic Segmentation [27.155133686127474]
We construct a graph neural network (P-GNN) based on the self-detected patches from different images that contain the same class labels.
We conduct experiments on the popular PASCAL VOC 2012 benchmarks, and our model yields state-of-the-art performance.
arXiv Detail & Related papers (2021-10-08T08:59:16Z) - Mining Contextual Information Beyond Image for Semantic Segmentation [37.783233906684444]
The paper studies the context aggregation problem in semantic image segmentation.
It proposes to mine the contextual information beyond individual images to further augment the pixel representations.
The proposed method could be effortlessly incorporated into existing segmentation frameworks.
arXiv Detail & Related papers (2021-08-26T14:34:23Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.