Experimental demonstration of steady-state dynamics of three-level quantum heat engine using superconducting quantum circuits
- URL: http://arxiv.org/abs/2401.15833v2
- Date: Tue, 14 May 2024 10:49:39 GMT
- Title: Experimental demonstration of steady-state dynamics of three-level quantum heat engine using superconducting quantum circuits
- Authors: Gao-xiang Deng, Haoqiang Ai, Wei Shao, Yu Liu, Zheng Cui,
- Abstract summary: This study proposes a method to simulate the steady-state dynamics of a three-level quantum heat engine by designing and implementing superconducting quantum circuits.
The outcomes from the quantum circuit model designed in this study, when executed on a real quantum device, closely align with theoretical predictions, thereby validating the effectiveness of the circuit model.
- Score: 5.128039456682052
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The three-level system represents the smallest quantum system capable of autonomous cycling in quantum heat engines. This study proposes a method to simulate the steady-state dynamics of a three-level quantum heat engine by designing and implementing superconducting quantum circuits. Following error mitigation, the outcomes from the quantum circuit model designed in this study, when executed on a real quantum device, closely align with theoretical predictions, thereby validating the effectiveness of the circuit model. This study offers a novel approach for investigating three-level quantum heat engines, enabling the verification of theoretical research findings while also reducing the complexity and cost of experimental procedures.
Related papers
- Capturing dynamics and thermodynamics of a three-level quantum heat engine via programmable quantum circuits [5.867866646262407]
This research employs the Kraus representation and Sz.-Nagy dilation theorem to model a three-level quantum heat on quantum circuits.
The feasibility of the dynamic model is validated by tracking the changes of population.
The stability of quantum circuit simulations is scrutinized through a comparative analysis of theoretical and simulated results.
arXiv Detail & Related papers (2024-05-28T02:30:04Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Simulating groundstate and dynamical quantum phase transitions on a
superconducting quantum computer [0.11744028458220425]
We simulate the groundstate of the quantum Ising model through its quantum critical point on a superconducting quantum device.
Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states.
arXiv Detail & Related papers (2022-05-25T18:05:53Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.