論文の概要: A Deep Q-Network Based on Radial Basis Functions for Multi-Echelon
Inventory Management
- arxiv url: http://arxiv.org/abs/2401.15872v1
- Date: Mon, 29 Jan 2024 04:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 16:01:20.319525
- Title: A Deep Q-Network Based on Radial Basis Functions for Multi-Echelon
Inventory Management
- Title(参考訳): マルチエケロン在庫管理のためのラジアル基底関数に基づく深層qネットワーク
- Authors: Liqiang Cheng, Jun Luo, Weiwei Fan, Yidong Zhang, Yuan Li
- Abstract要約: 本稿では,複雑なネットワークトポロジによる複数エケロン在庫管理問題に対処する。
Q-ネットワークが放射基底関数に基づくDRLモデルを開発する。
ベースストックポリシーが最適であるシリアルシステムにおいて、マルチエケロンシステムにおけるより良いポリシーと競争性能を生成する。
- 参考スコア(独自算出の注目度): 6.149034764951798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses a multi-echelon inventory management problem with a
complex network topology where deriving optimal ordering decisions is
difficult. Deep reinforcement learning (DRL) has recently shown potential in
solving such problems, while designing the neural networks in DRL remains a
challenge. In order to address this, a DRL model is developed whose Q-network
is based on radial basis functions. The approach can be more easily constructed
compared to classic DRL models based on neural networks, thus alleviating the
computational burden of hyperparameter tuning. Through a series of simulation
experiments, the superior performance of this approach is demonstrated compared
to the simple base-stock policy, producing a better policy in the multi-echelon
system and competitive performance in the serial system where the base-stock
policy is optimal. In addition, the approach outperforms current DRL
approaches.
- Abstract(参考訳): 本稿では,最適順序決定の導出が難しい複雑なネットワークトポロジーを持つマルチエケロン在庫管理問題に対処する。
深層強化学習(DRL)は、最近そのような問題を解決する可能性を示しているが、DRLでニューラルネットワークを設計することは依然として課題である。
これを解決するために、Q-networkが放射基底関数に基づくDRLモデルを開発した。
この手法はニューラルネットワークに基づく従来のDRLモデルよりも容易に構築でき、ハイパーパラメータチューニングの計算負担を軽減することができる。
一連のシミュレーション実験を通じて,本手法の簡易な基本方針と比較して優れた性能を示し,基本方針が最適であるシリアルシステムにおいて,マルチエケロンシステムにおけるより良い方針と競争性能を示す。
さらに、このアプローチは現在のDRLアプローチよりも優れています。
関連論文リスト
- Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
統合アクセスとバックハウリング(IRL)は、将来の世代におけるより高いデータレートに対する前例のない要求を満たすための、実行可能なアプローチである。
本稿では,分数ノードに付随する巨大なアクション空間の問題を,Deep Q-Learning Networkを用いて処理する方法を示す。
論文 参考訳(メタデータ) (2023-08-31T21:30:25Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
マルチファイダリティ・シミュレーション・セッティングを利用する制御型トランスファー学習フレームワークを提案する。
我々の戦略は高レイノルズ数での翼形状最適化問題に対して展開される。
本研究は,本フレームワークが他の科学的DRLシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-02-22T20:44:04Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
我々は、純粋なDRLベースアルゴリズムとハイブリッドDRLヒューリスティックアルゴリズムである2つのDeep Reinforcement Learningアルゴリズムを比較した。
評価結果から,提案手法は純粋なDRLよりも予測不可能なネットワーク負荷変化の場合に,より堅牢で信頼性が高いことが示唆された。
論文 参考訳(メタデータ) (2021-08-05T10:24:33Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。
我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (2021-06-03T17:58:51Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
CQLは既存のオフラインRLメソッドよりも大幅に優れており、多くの場合、ファイナルリターンの2~5倍高いポリシを学習しています。
理論的には、CQLは現在のポリシーの価値の低いバウンダリを生成し、理論的改善保証を伴う政策学習手順に組み込むことができることを示す。
論文 参考訳(メタデータ) (2020-06-08T17:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。