論文の概要: Simple Policy Optimization
- arxiv url: http://arxiv.org/abs/2401.16025v1
- Date: Mon, 29 Jan 2024 10:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 15:16:22.041014
- Title: Simple Policy Optimization
- Title(参考訳): シンプルな政策最適化
- Authors: Zhengpeng Xie
- Abstract要約: SPO(Simple Policy Optimization)アルゴリズムは、旧ポリシーと現行ポリシーのKL分散のための新しいクリッピング手法を提案する。
SPOは、ほぼすべての環境において、信頼領域の制約を効果的に実施でき、一方、一階アルゴリズムの単純さは維持できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PPO (Proximal Policy Optimization) algorithm has demonstrated excellent
performance in many fields, and it is considered as a simple version of TRPO
(Trust Region Policy Optimization) algorithm. However, the ratio clipping
operation in PPO may not always effectively enforce the trust region
constraints, this can be a potential factor affecting the stability of the
algorithm. In this paper, we propose SPO (Simple Policy Optimization)
algorithm, which introduces a novel clipping method for KL divergence between
the old and current policies. SPO can effectively enforce the trust region
constraints in almost all environments, while still maintaining the simplicity
of a first-order algorithm. Comparative experiments in Atari 2600 environments
show that SPO sometimes provides stronger performance than PPO. Code is
available at https://github.com/MyRepositories-hub/Simple-Policy-Optimization.
- Abstract(参考訳): PPO (Proximal Policy Optimization) アルゴリズムは多くの分野で優れた性能を示しており、TRPO (Trust Region Policy Optimization) アルゴリズムの単純なバージョンと見なされている。
しかし、PPOの切断操作は必ずしも信頼領域の制約を効果的に強制するわけではないため、アルゴリズムの安定性に影響を与える潜在的な要因となる可能性がある。
本稿では,従来のポリシと現在のポリシのKL分散のための新しいクリッピング手法であるSPOアルゴリズムを提案する。
SPOは、ほぼすべての環境で信頼領域の制約を効果的に実施でき、一方、一階アルゴリズムの単純さは維持できる。
Atari 2600環境の比較実験では、SPOがPPOよりも強い性能を提供することがある。
コードはhttps://github.com/MyRepositories-hub/Simple-Policy-Optimizationで入手できる。
関連論文リスト
- Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
一般非線形関数近似を用いた低スイッチングサンプリング効率ポリシ最適化アルゴリズム LPO を設計する。
提案アルゴリズムは,$widetildeO(fractextpoly(d)varepsilon3)$サンプルのみを用いて,$varepsilon$-optimal Policyを得る。
論文 参考訳(メタデータ) (2023-06-15T23:51:46Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
本研究では,政策に対する信頼領域の制約が,基礎となるモノトニック改善の保証を損なうことなく,信頼領域のない制約によって安全に置き換えられることを示す。
我々は,TREFree(Trust-Region-Free Policy Optimization)と呼ばれるアルゴリズムを,信頼領域の制約が不要であるとして明示する。
論文 参考訳(メタデータ) (2023-02-15T23:10:06Z) - Policy Optimization for Stochastic Shortest Path [43.2288319750466]
最短経路(SSP)問題に対する政策最適化について検討する。
本研究では,有限ホライゾンモデルを厳密に一般化した目標指向強化学習モデルを提案する。
ほとんどの設定において、我々のアルゴリズムは、ほぼ最適の後悔境界に達することが示されている。
論文 参考訳(メタデータ) (2022-02-07T16:25:14Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
政策最適化は強化学習アルゴリズムを設計するための基本原理である。
優れた経験的性能にもかかわらず、PPO-clipは今まで理論的な証明によって正当化されていない。
PPO-クリップの変種に対する最適ポリシーへの大域収束を証明できるのはこれが初めてである。
論文 参考訳(メタデータ) (2021-10-26T15:56:57Z) - Bregman Gradient Policy Optimization [97.73041344738117]
本稿では,Bregmanの発散と運動量に基づく強化学習のためのBregmanグラデーションポリシーの最適化を設計する。
VR-BGPOは、各イテレーションで1つの軌道のみを必要とする$epsilon$stationaryポイントを見つけるために、$tilde(epsilon-3)$で最高の複雑性に達する。
論文 参考訳(メタデータ) (2021-06-23T01:08:54Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (reps) は多くのシミュレーションと実世界のロボットドメインでポリシー学習に成功した。
勾配に基づく解法を用いる場合、REPSの性能には保証がない。
最適規則化ポリシーに好適な収束を維持するためのパラメータ更新を計算するために,基礎となる決定プロセスへの表現的アクセスを利用する手法を提案する。
論文 参考訳(メタデータ) (2021-03-17T16:22:59Z) - Optimization Issues in KL-Constrained Approximate Policy Iteration [48.24321346619156]
多くの強化学習アルゴリズムは、近似ポリシー反復(API)のバージョンと見なすことができる。
標準APIはしばしば動作が悪いが、KL-divergenceによる各ポリシー更新を以前のポリシーに正規化することで学習が安定化できることが示されている。
TRPO、MPO、VMPOなどの一般的な実用的なアルゴリズムは、連続ポリシーのKL分割に関する制約によって正規化を置き換える。
論文 参考訳(メタデータ) (2021-02-11T19:35:33Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
本稿では,2つの一般的なアルゴリズムのケーススタディにより,ディープポリシー勾配アルゴリズムにおけるアルゴリズムの進歩のルーツについて検討する。
具体的には,「コードレベルの最適化」の結果について検討する。
以上の結果から, (a) TRPOに対するPPOの累積報酬のほとんどを担っていることが示され, (b) RL メソッドの動作方法が根本的に変化していることが示唆された。
論文 参考訳(メタデータ) (2020-05-25T16:24:59Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。