論文の概要: Simple Policy Optimization
- arxiv url: http://arxiv.org/abs/2401.16025v7
- Date: Tue, 28 Jan 2025 06:27:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:38:51.000996
- Title: Simple Policy Optimization
- Title(参考訳): シンプルな政策最適化
- Authors: Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, Renjing Xu,
- Abstract要約: 信頼地域政策最適化(Trust Region Policy Optimization, TRPO)は、信頼領域内の保守的な更新を通じて単調な政策改善を保証することで知られている。
PPO(Proximal Policy Optimization)は、TRPOのアプローチを単純化し、効率を向上するが、理論的な堅牢性を犠牲にすることで、この問題に対処する。
どちらの方法の長所を組み合わせられるだろうか?
本稿では,制約のない新しい1次アルゴリズムであるSimple Policy Optimization (SPO)を紹介する。
- 参考スコア(独自算出の注目度): 15.66748378216631
- License:
- Abstract: Model-free reinforcement learning algorithms have seen remarkable progress, but key challenges remain. Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region, backed by strong theoretical guarantees. However, its reliance on complex second-order optimization limits its practical efficiency. Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness. This raises a natural question: Can we combine the strengths of both methods? In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm. By slightly modifying the policy loss used in PPO, SPO can achieve the best of both worlds. Our new objective improves upon ratio clipping, offering stronger theoretical properties and better constraining the probability ratio within the trust region. Empirical results demonstrate that SPO outperforms PPO with a simple implementation, particularly for training large, complex network architectures end-to-end.
- Abstract(参考訳): モデルなし強化学習アルゴリズムは目覚ましい進歩を遂げているが、重要な課題は残る。
信頼地域政策最適化(Trust Region Policy Optimization, TRPO)は、信頼できる理論的保証を背景として、信頼領域内の保守的な更新を通じて単調な政策改善を保証することで知られている。
しかし、複雑な二階最適化に依存しているため、実用効率は制限される。
PPO(Proximal Policy Optimization)は、TRPOのアプローチを単純化し、効率を向上するが、理論的な堅牢性を犠牲にすることで、この問題に対処する。
どちらの方法の長所を組み合わせられるだろうか?
本稿では,制約のない新しい1次アルゴリズムであるSimple Policy Optimization (SPO)を紹介する。
PPOで使われる政策損失をわずかに修正することで、SPOは両方の世界のベストを達成できる。
我々の新しい目的は、より強い理論的特性を提供し、信頼領域内の確率比をよりよく制約する比率クリッピングの改善である。
実証的な結果は、特に大規模で複雑なネットワークアーキテクチャをエンドツーエンドにトレーニングするために、SPOが単純な実装でPPOより優れていることを示している。
関連論文リスト
- Reflective Policy Optimization [20.228281670899204]
リフレクティブポリシー最適化(RPO) 政策最適化のための過去と将来の状態対応情報。
RPOはエージェントにイントロスペクションの権限を与え、現在の状態内でのアクションの変更を可能にする。
RPOの有効性と有効性は2つの強化学習ベンチマークで実証された。
論文 参考訳(メタデータ) (2024-06-06T01:46:49Z) - Supported Trust Region Optimization for Offline Reinforcement Learning [59.43508325943592]
本稿では,行動方針の支持範囲内で制約された政策を用いて信頼地域政策の最適化を行う,信頼地域最適化(STR)を提案する。
近似やサンプリング誤差を仮定すると、STRはデータセットの最適サポート制約ポリシーに収束するまで厳密なポリシー改善を保証する。
論文 参考訳(メタデータ) (2023-11-15T13:16:16Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
政策勾配法は、政策出力の有界変化を通じて単調な改善を図っている。
本研究では,PPOの性能を連続的な作用空間に適用した場合,目的の単純変化によって一貫した改善が期待できることを示す。
PPO と PPO の両目標に比較して, COPG の目標が平均的な「悲観的」であること, 2) この悲観主義は探索を促進させることを示した。
論文 参考訳(メタデータ) (2023-11-10T03:02:49Z) - Provably Convergent Policy Optimization via Metric-aware Trust Region
Methods [21.950484108431944]
信頼領域法は、強化学習における政策最適化の安定化に広く用いられている。
我々は、より柔軟なメトリクスを活用し、ワッサーシュタインとシンクホーンの信頼領域によるポリシー最適化の2つの自然な拡張について検討する。
WPOは単調な性能向上を保証し、SPOはエントロピー正則化器が減少するにつれてWPOに確実に収束することを示す。
論文 参考訳(メタデータ) (2023-06-25T05:41:38Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
本研究では,政策に対する信頼領域の制約が,基礎となるモノトニック改善の保証を損なうことなく,信頼領域のない制約によって安全に置き換えられることを示す。
我々は,TREFree(Trust-Region-Free Policy Optimization)と呼ばれるアルゴリズムを,信頼領域の制約が不要であるとして明示する。
論文 参考訳(メタデータ) (2023-02-15T23:10:06Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
最適化手法の優位性は、正確な勾配が用いられるかどうかに大きく依存することを示す。
次に,政策最適化におけるコミット率の概念を紹介する。
第三に、外部のオラクル情報がない場合には、収束を加速するために幾何を利用することと、最適性をほぼ確実に達成することとの間に本質的にトレードオフがあることが示される。
論文 参考訳(メタデータ) (2021-10-29T06:35:44Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
政策最適化は強化学習アルゴリズムを設計するための基本原理である。
優れた経験的性能にもかかわらず、PPO-clipは今まで理論的な証明によって正当化されていない。
PPO-クリップの変種に対する最適ポリシーへの大域収束を証明できるのはこれが初めてである。
論文 参考訳(メタデータ) (2021-10-26T15:56:57Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
信頼地域政策最適化(TRPO)とPPO(Pximal Policy Optimization)は、深層強化学習(RL)において最も成功した政策勾配アプローチの一つである。
本稿では, 連続的な政策によって引き起こされる割引状態-行動訪問分布を, 近接項で抑制し, 政策改善を安定化させる新しいアルゴリズムを提案する。
提案手法は, ベンチマーク高次元制御タスクの安定性と最終的な性能向上に有効である。
論文 参考訳(メタデータ) (2020-03-09T13:05:47Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
オーバーパラメトリゼーションを備えたPPOOの変種が,グローバルな最適ネットワークに収束することを示す。
我々の分析の鍵は、1次元の単調性の概念の下で無限勾配の反復であり、そこでは勾配はネットワークによって瞬く。
論文 参考訳(メタデータ) (2019-06-25T03:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。