Simple Policy Optimization
- URL: http://arxiv.org/abs/2401.16025v7
- Date: Tue, 28 Jan 2025 06:27:25 GMT
- Title: Simple Policy Optimization
- Authors: Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, Renjing Xu,
- Abstract summary: Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region.
Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness.
This raises a natural question: Can we combine the strengths of both methods?
In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm.
- Score: 15.66748378216631
- License:
- Abstract: Model-free reinforcement learning algorithms have seen remarkable progress, but key challenges remain. Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region, backed by strong theoretical guarantees. However, its reliance on complex second-order optimization limits its practical efficiency. Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness. This raises a natural question: Can we combine the strengths of both methods? In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm. By slightly modifying the policy loss used in PPO, SPO can achieve the best of both worlds. Our new objective improves upon ratio clipping, offering stronger theoretical properties and better constraining the probability ratio within the trust region. Empirical results demonstrate that SPO outperforms PPO with a simple implementation, particularly for training large, complex network architectures end-to-end.
Related papers
- Reflective Policy Optimization [20.228281670899204]
Reflective Policy Optimization (RPO) amalgamates past and future state-action information for policy optimization.
RPO empowers the agent for introspection, allowing modifications to its actions within the current state.
Empirical results demonstrate RPO's feasibility and efficacy in two reinforcement learning benchmarks.
arXiv Detail & Related papers (2024-06-06T01:46:49Z) - Supported Trust Region Optimization for Offline Reinforcement Learning [59.43508325943592]
We propose Supported Trust Region optimization (STR) which performs trust region policy optimization with the policy constrained within the support of the behavior policy.
We show that, when assuming no approximation and sampling error, STR guarantees strict policy improvement until convergence to the optimal support-constrained policy in the dataset.
arXiv Detail & Related papers (2023-11-15T13:16:16Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - Provably Convergent Policy Optimization via Metric-aware Trust Region
Methods [21.950484108431944]
Trust-region methods are pervasively used to stabilize policy optimization in reinforcement learning.
We exploit more flexible metrics and examine two natural extensions of policy optimization with Wasserstein and Sinkhorn trust regions.
We show that WPO guarantees a monotonic performance improvement, and SPO provably converges to WPO as the entropic regularizer diminishes.
arXiv Detail & Related papers (2023-06-25T05:41:38Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
We show that the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising the underlying monotonic improvement guarantee.
We call the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) explicit as it is free of any trust region constraints.
arXiv Detail & Related papers (2023-02-15T23:10:06Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
We present a new monotonic improvement guarantee for optimizing decentralized policies in cooperative Multi-Agent Reinforcement Learning (MARL)
We show that a trust region constraint can be effectively enforced in a principled way by bounding independent ratios based on the number of agents in training.
arXiv Detail & Related papers (2022-01-31T20:39:48Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
We show that a variant of PPOO equipped with over-parametrization converges to globally optimal networks.
The key to our analysis is the iterate of infinite gradient under a notion of one-dimensional monotonicity, where the gradient and are instant by networks.
arXiv Detail & Related papers (2019-06-25T03:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.