論文の概要: Neuromorphic Valence and Arousal Estimation
- arxiv url: http://arxiv.org/abs/2401.16058v1
- Date: Mon, 29 Jan 2024 11:13:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 15:01:15.682687
- Title: Neuromorphic Valence and Arousal Estimation
- Title(参考訳): 神経形態的ヴァレンスと覚醒推定
- Authors: Lorenzo Berlincioni, Luca Cultrera, Federico Becattini, Alberto Del
Bimbo
- Abstract要約: 我々は、顔から感情状態を予測するためにニューロモルフィックデータを使用します。
トレーニングされたモデルが依然として最先端の結果を得ることができることを実証します。
本稿では,フレームベースとビデオベースの両方において,この課題を解決するための代替モデルを提案する。
- 参考スコア(独自算出の注目度): 28.793519320598865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognizing faces and their underlying emotions is an important aspect of
biometrics. In fact, estimating emotional states from faces has been tackled
from several angles in the literature. In this paper, we follow the novel route
of using neuromorphic data to predict valence and arousal values from faces.
Due to the difficulty of gathering event-based annotated videos, we leverage an
event camera simulator to create the neuromorphic counterpart of an existing
RGB dataset. We demonstrate that not only training models on simulated data can
still yield state-of-the-art results in valence-arousal estimation, but also
that our trained models can be directly applied to real data without further
training to address the downstream task of emotion recognition. In the paper we
propose several alternative models to solve the task, both frame-based and
video-based.
- Abstract(参考訳): 顔とその基盤となる感情を認識することはバイオメトリックスの重要な側面である。
実際、顔からの感情状態の推定は、文学のいくつかの角度から取り組まれている。
本稿では,ニューロモルフィックデータを用いて顔からの価値と覚醒値を予測する新しい手法について述べる。
イベントベースのアノテートビデオの収集が難しいため,既存のrgbデータセットのニューロモルフィックな対応を生成するために,イベントカメラシミュレータを利用する。
シミュレーションデータ上でのトレーニングモデルが、原子価-覚醒推定の最先端結果をもたらすだけでなく、我々のトレーニングモデルは、感情認識の下流タスクにさらなるトレーニングを加えることなく、実データに直接適用できることを実証する。
本稿では,フレームベースとビデオベースの両方を用いて,課題を解決するための代替モデルを提案する。
関連論文リスト
- Data Augmentation and Transfer Learning Approaches Applied to Facial
Expressions Recognition [0.3481985817302898]
本稿では,認識タスクの性能を向上させる新しいデータ拡張手法を提案する。
我々は、感情タイプごとに新しい合成画像を生成することができるGANモデルをスクラッチから構築する。
拡張データセットでは、異なるアーキテクチャで事前訓練された畳み込みニューラルネットワークを微調整します。
論文 参考訳(メタデータ) (2024-02-15T14:46:03Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
そこで本研究では,仮想人間を含む合成データを用いて,実世界の映像を活用してモデルを事前学習するベンチマークを提案する。
次に、このデータに基づいて学習した表現を、下流行動認識ベンチマークの様々なセットに転送可能であるかを評価する。
私たちのアプローチは、以前のベースラインを最大5%上回ります。
論文 参考訳(メタデータ) (2023-11-10T18:38:14Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - A Robust Framework for Deep Learning Approaches to Facial Emotion
Recognition and Evaluation [0.17398560678845074]
本稿では、FER用に開発したモデルを比較し、相互に比較するフレームワークを提案する。
AffectNetデータセットで、軽量な畳み込みニューラルネットワークをトレーニングする。
概念実証として提案したフレームワークを用いてWebアプリケーションを開発,デプロイする。
論文 参考訳(メタデータ) (2022-01-30T02:10:01Z) - Simulated Adversarial Testing of Face Recognition Models [53.10078734154151]
本稿では,シミュレータを用いて機械学習アルゴリズムの検証方法を学ぶためのフレームワークを提案する。
実データでトレーニングされたモデルの弱点が、シミュレーションサンプルを使って発見できることを示すのはこれが初めてである。
論文 参考訳(メタデータ) (2021-06-08T17:58:10Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
我々は,神経回路が行動をどのようにオーケストレーションするかを研究するために,手動による監督を使わずに,神経科学モデル生物のポーズを捉えることを目的としている。
我々の重要な貢献は、未完成の画像翻訳フレームワークにおける外観、形状、ポーズの明示的で独立したモデリングである。
ショウジョウバエ(ハエ)、線虫(線虫)、ダニオ・レリオ(ゼブラフィッシュ)のポーズ推定精度の向上を実証した。
論文 参考訳(メタデータ) (2020-01-23T15:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。