"You tell me": A Dataset of GPT-4-Based Behaviour Change Support Conversations
- URL: http://arxiv.org/abs/2401.16167v2
- Date: Wed, 3 Apr 2024 09:02:52 GMT
- Title: "You tell me": A Dataset of GPT-4-Based Behaviour Change Support Conversations
- Authors: Selina Meyer, David Elsweiler,
- Abstract summary: We share a dataset containing text-based user interactions related to behaviour change with two GPT-4-based conversational agents.
This dataset includes conversation data, user language analysis, perception measures, and user feedback for LLM-generated turns.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational agents are increasingly used to address emotional needs on top of information needs. One use case of increasing interest are counselling-style mental health and behaviour change interventions, with large language model (LLM)-based approaches becoming more popular. Research in this context so far has been largely system-focused, foregoing the aspect of user behaviour and the impact this can have on LLM-generated texts. To address this issue, we share a dataset containing text-based user interactions related to behaviour change with two GPT-4-based conversational agents collected in a preregistered user study. This dataset includes conversation data, user language analysis, perception measures, and user feedback for LLM-generated turns, and can offer valuable insights to inform the design of such systems based on real interactions.
Related papers
- Data Augmentation Integrating Dialogue Flow and Style to Adapt Spoken Dialogue Systems to Low-Resource User Groups [1.7725414095035827]
This study addresses the interaction challenges encountered by spoken dialogue systems (SDSs) when engaging with users who exhibit distinct conversational behaviors.
We propose a novel data augmentation framework to enhance SDS performance for user groups with limited resources.
arXiv Detail & Related papers (2024-08-20T03:33:04Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
Traditional turn-based chat systems prevent users from verbally interacting with system while it is generating responses.
To overcome these limitations, we adapt existing LLMs to listen users while generating output and provide users with instant feedback.
We build a dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions.
arXiv Detail & Related papers (2024-06-22T03:20:10Z) - CloChat: Understanding How People Customize, Interact, and Experience
Personas in Large Language Models [15.915071948354466]
CloChat is an interface supporting easy and accurate customization of agent personas in large language models.
Results indicate that participants formed emotional bonds with the customized agents, engaged in more dynamic dialogues, and showed interest in sustaining interactions.
arXiv Detail & Related papers (2024-02-23T11:25:17Z) - Response Generation for Cognitive Behavioral Therapy with Large Language
Models: Comparative Study with Socratic Questioning [6.400704401007114]
This study investigates the impact of generated responses on subjective evaluations such as mood change, cognitive change, and dialogue quality.
When using GPT-4, the amount of mood change, empathy, and other dialogue qualities improve significantly.
arXiv Detail & Related papers (2024-01-29T08:53:41Z) - Learning from Emotions, Demographic Information and Implicit User
Feedback in Task-Oriented Document-Grounded Dialogues [59.516187851808375]
We introduce FEDI, the first English dialogue dataset for task-oriented document-grounded dialogues annotated with demographic information, user emotions and implicit feedback.
Our experiments with FLAN-T5, GPT-2 and LLaMA-2 show that these data have the potential to improve task completion and the factual consistency of the generated responses and user acceptance.
arXiv Detail & Related papers (2024-01-17T14:52:26Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
Large Language Models (LLMs) are notorious for blending fact with fiction and generating non-factual content, known as hallucinations.
We propose an interactive system that helps users gain insight into the reliability of the generated text.
arXiv Detail & Related papers (2023-11-28T14:55:52Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Partner Matters! An Empirical Study on Fusing Personas for Personalized
Response Selection in Retrieval-Based Chatbots [51.091235903442715]
This paper makes an attempt to explore the impact of utilizing personas that describe either self or partner speakers on the task of response selection.
Four persona fusion strategies are designed, which assume personas interact with contexts or responses in different ways.
Empirical studies on the Persona-Chat dataset show that the partner personas can improve the accuracy of response selection.
arXiv Detail & Related papers (2021-05-19T10:32:30Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.