論文の概要: Iterative assembly of $^{171}$Yb atom arrays with cavity-enhanced optical lattices
- arxiv url: http://arxiv.org/abs/2401.16177v3
- Date: Tue, 18 Jun 2024 20:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 05:38:47.897081
- Title: Iterative assembly of $^{171}$Yb atom arrays with cavity-enhanced optical lattices
- Title(参考訳): 共振器強化光学格子を用いた$^{171}$Yb原子アレイの反復組み立て
- Authors: M. A. Norcia, H. Kim, W. B. Cairncross, M. Stone, A. Ryou, M. Jaffe, M. O. Brown, K. Barnes, P. Battaglino, T. C. Bohdanowicz, A. Brown, K. Cassella, C. -A. Chen, R. Coxe, D. Crow, J. Epstein, C. Griger, E. Halperin, F. Hummel, A. M. W. Jones, J. M. Kindem, J. King, K. Kotru, J. Lauigan, M. Li, M. Lu, E. Megidish, J. Marjanovic, M. McDonald, T. Mittiga, J. A. Muniz, S. Narayanaswami, C. Nishiguchi, T. Paule, K. A. Pawlak, L. S. Peng, K. L. Pudenz, D. Rodriguez Perez, A. Smull, D. Stack, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro, L. Wadleigh, T. Wilkason, T. -Y. Wu, X. Xie, E. Zalys-Geller, X. Zhang, B. J. Bloom,
- Abstract要約: 個々のアドレス可能な原子の大きな配列を組み立て、維持することは、中性原子ベースの量子コンピュータとシミュレータの継続的なスケーリングの鍵となる要件である。
我々は,光ツイーザとキャビティ強化光学格子の相乗的組み合わせに基づく,原子配列の組立のための新しいパラダイムを実証する。
- 参考スコア(独自算出の注目度): 0.1441195472527485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators. In this work, we demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices, and the incremental filling of a target array from a repetitively filled reservoir. In this protocol, the tweezers provide microscopic rearrangement of atoms, while the cavity-enhanced lattices enable the creation of large numbers of optical traps with sufficient depth for rapid low-loss imaging of atoms. We apply this protocol to demonstrate near-deterministic filling (99% per-site occupancy) of 1225-site arrays of optical traps. Because the reservoir is repeatedly filled with fresh atoms, the array can be maintained in a filled state indefinitely. We anticipate that this protocol will be compatible with mid-circuit reloading of atoms into a quantum processor, which will be a key capability for running large-scale error-corrected quantum computations whose durations exceed the lifetime of a single atom in the system.
- Abstract(参考訳): 個々のアドレス可能な原子の大きな配列を組み立て、維持することは、中性原子ベースの量子コンピュータとシミュレータの継続的なスケーリングの鍵となる要件である。
本研究では,光ツイーザとキャビティ強化光学格子の相乗的組み合わせと,繰り返し充填された貯留層からのターゲットアレイの漸増充填に基づく,原子配列の組立のための新しいパラダイムを実証する。
このプロトコルでは、ツイーザーは原子の顕微鏡的再配置を提供し、キャビティ強化格子は原子の高速低損失イメージングに十分な深さの多数の光学トラップを作成できる。
このプロトコルを用いて、1225個の光学トラップのほぼ決定論的充填(サイト当たり99%)を実証する。
貯留層は新鮮な原子で繰り返し充填されるため、配列は無期限に充填状態に維持することができる。
このプロトコルは、システム内の1つの原子の寿命を超える大規模なエラー修正量子計算を実行する上で重要な機能である、量子プロセッサへの原子の再ロードと互換性が期待できる。
関連論文リスト
- Continuous operation of large-scale atom arrays in optical lattices [0.0]
集積された中性原子配列を光学格子や光ツイーザに閉じ込めたサイズを拡大することは、多くのアプリケーションで実現可能なステップである。
我々は、あるサイクルから次のサイクルに失われる原子を単にリロードすることで、そのような大きな配列を継続的に維持できることを示します。
我々のアプローチは、連続的な操作で数千の原子を含む大きな順序の原子配列を持つ量子科学への道を開く。
論文 参考訳(メタデータ) (2024-02-07T16:12:49Z) - An integrated atom array -- nanophotonic chip platform with
background-free imaging [0.18641315013048299]
我々は、最大64個の光ツイーザと100個以上のナノフォトニックデバイスをホストするミリスケールフォトニックチップを組み合わせたアーキテクチャを実証する。
多色励起・検出方式を用いて,ナノデバイスに近接した背景画像の高忠実度(99.2%)を実現する。
論文 参考訳(メタデータ) (2023-11-03T18:00:01Z) - Reservoir-based deterministic loading of single-atom tweezer arrays [0.0]
最先端の個々のトウィーザープラットフォームは、トウィーザーアレイを冷えた原子の雲で空間的に重ね合わせることに頼っている。
追加のコールド原子貯留層とバッファトラップの配列上に構築されたモジュラースキームを導入する。
その結果、データレートの増大と、量子科学における個々の原子トウィーザーアレイの連続的な操作への経路の開放が促進された。
論文 参考訳(メタデータ) (2023-02-24T16:30:24Z) - Functional building blocks for scalable multipartite entanglement in
optical lattices [7.362583014963337]
我々は、量子ガス顕微鏡を組み込んだ原子を中程度に分離し、単一原子の操作を行う量子ゲート層を実装するための新しいアーキテクチャを開発した。
我々はベル対を1次元の10原子鎖と2次元の2時間4$原子のプラケットに接続することで、スケーラブルな多粒子絡み合わせのための機能的ビルディングブロックを作成し、検証した。
論文 参考訳(メタデータ) (2022-10-06T14:06:46Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
実世界の展開とスケーリングの課題に対応するために設計された量子メモリを提示する。
メモリ技術は、温かいルビジウム蒸気を記憶媒体として利用し、室温で動作する。
我々は,高忠実度検索(95%)と低演算誤差(10-2)$を,単一光子レベルの量子メモリ操作に対して160$mu s$の記憶時間で示す。
論文 参考訳(メタデータ) (2022-05-26T00:33:13Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
サブラジアント励起は、非常に長い寿命で原子配列を通して伝播する。
これらの励起を利用して、調整可能な指向性発光パターンを得ることができることを実証する。
また、これらの配向放出パターンが集合的異方性散逸結合にどのように変換するかをベンチマークする。
論文 参考訳(メタデータ) (2021-07-01T14:26:33Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
一次元で自由なSi$_3$N$_4$ベースのフォトニック結晶キャビティ内にSiV$-$含ナノダイアモンドを含むハイブリッド量子フォトニクスを示す。
結果として生じる光子フラックスは、自由空間に比べて14倍以上増加する。
結果は、ナノダイアモンドのSiV$-$-中心を持つハイブリッド量子フォトニクスに基づいて量子ネットワークノードを実現するための重要なステップである。
論文 参考訳(メタデータ) (2020-12-21T17:22:25Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
スキームは、励起状態の超微細分裂よりもはるかに大きく、原子遷移から切り離されたレーザーと空洞場で動作する。
これにより、基底超微粒子レベルの全角運動量によって決定される集合スピンを持つ、単純で空洞を損傷したTavis-Cummingsモデルへのダイナミクスの還元が可能となる。
論文 参考訳(メタデータ) (2020-12-01T03:55:27Z) - Efficient preparation of 2D defect-free atom arrays with near-fewest
sorting-atom moves [17.56031315827533]
提案手法は, 提案する原子アセンブラ方式において, ほぼ北西に移動可能な新しいソートアルゴリズム (ヒューリスティッククラスタアルゴリズム, HCA) を提案する。
本手法は, ボトムアップ量子計算, 量子シミュレーション, 精度測定のために, 数百個の原子をスケールするために必要である。
論文 参考訳(メタデータ) (2020-11-20T13:08:06Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
長距離エンタングゲートを用いた普遍量子計算のためのプラットフォームとして、2種の超低温原子種を混合して提案する。
1つの原子種は、情報の基本単位を形成する可変長の局所化された集合スピンを実現する。
本稿では,ゴッテマン・キタエフ・プレスキル符号の有限次元バージョンについて論じ,集合スピンに符号化された量子情報を保護する。
論文 参考訳(メタデータ) (2020-10-29T20:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。