Capturing Knowledge Graphs and Rules with Octagon Embeddings
- URL: http://arxiv.org/abs/2401.16270v2
- Date: Tue, 18 Jun 2024 15:29:55 GMT
- Title: Capturing Knowledge Graphs and Rules with Octagon Embeddings
- Authors: Victor Charpenay, Steven Schockaert,
- Abstract summary: Region based knowledge graph embeddings represent relations as geometric regions.
Existing approaches are severely restricted in their ability to model composition.
We show that our octagon embeddings can properly capture a non-trivial class of rule bases.
- Score: 17.49288661342947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Region based knowledge graph embeddings represent relations as geometric regions. This has the advantage that the rules which are captured by the model are made explicit, making it straightforward to incorporate prior knowledge and to inspect learned models. Unfortunately, existing approaches are severely restricted in their ability to model relational composition, and hence also their ability to model rules, thus failing to deliver on the main promise of region based models. With the aim of addressing these limitations, we investigate regions which are composed of axis-aligned octagons. Such octagons are particularly easy to work with, as intersections and compositions can be straightforwardly computed, while they are still sufficiently expressive to model arbitrary knowledge graphs. Among others, we also show that our octagon embeddings can properly capture a non-trivial class of rule bases. Finally, we show that our model achieves competitive experimental results.
Related papers
- Differentiable Reasoning about Knowledge Graphs with Region-based Graph Neural Networks [62.93577376960498]
Methods for knowledge graph (KG) completion need to capture semantic regularities and use these regularities to infer plausible knowledge that is not explicitly stated.
Most embedding-based methods are opaque in the kinds of regularities they can capture, although region-based KG embedding models have emerged as a more transparent alternative.
We propose RESHUFFLE, a simple model based on ordering constraints that can faithfully capture a much larger class of rule bases than existing approaches.
arXiv Detail & Related papers (2024-06-13T18:37:24Z) - From Latent to Lucid: Transforming Knowledge Graph Embeddings into Interpretable Structures [2.6451388057494283]
This paper introduces a post-hoc explainable AI method tailored for Knowledge Graph Embedding models.
Our approach directly decodes the latent representations encoded by Knowledge Graph Embedding models.
By identifying distinct structures within the subgraph neighborhoods of similarly embedded entities, our method translates these insights into human-understandable symbolic rules and facts.
arXiv Detail & Related papers (2024-06-03T19:54:11Z) - Linear building pattern recognition via spatial knowledge graph [2.3274138116397736]
Building patterns are important urban structures that reflect the effect of the urban material and social-economic on a region.
Previous researches are mostly based on the graph isomorphism method and use rules to recognize building patterns, which are not efficient.
This paper tries to apply the knowledge graph to recognize linear building patterns.
arXiv Detail & Related papers (2023-04-21T04:05:02Z) - I Know What You Do Not Know: Knowledge Graph Embedding via
Co-distillation Learning [16.723470319188102]
Knowledge graph embedding seeks to learn vector representations for entities and relations.
Recent studies have used pre-trained language models to learn embeddings based on the textual information of entities and relations.
We propose CoLE, a Co-distillation Learning method for KG Embedding that exploits the complement of graph structures and text information.
arXiv Detail & Related papers (2022-08-21T07:34:37Z) - ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs [73.86041481470261]
Cone Embeddings (ConE) is the first geometry-based query embedding model that can handle conjunction, disjunction, and negation.
ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2021-10-26T14:04:02Z) - Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph
Embedding [1.5469452301122175]
We show that knowledge graph embedding is naturally expressed in the topological and categorical language of textitcellular sheaves
A knowledge graph embedding can be described as an approximate global section of an appropriate textitknowledge sheaf over the graph.
The resulting embeddings can be easily adapted for reasoning over composite relations without special training.
arXiv Detail & Related papers (2021-10-07T20:54:40Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
We study a spectrum of models derived by generalizing the current state of the art for few-shot link prediction.
We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance.
Experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information.
arXiv Detail & Related papers (2021-02-05T21:04:31Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
We present a generative model for complex free-form structures such as stroke-based drawing tasks.
Our approach is suitable for interactive use cases such as auto-completing diagrams.
arXiv Detail & Related papers (2020-06-17T15:22:54Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.