A Graph Perspective to Probe Structural Patterns of Knowledge in Large Language Models
- URL: http://arxiv.org/abs/2505.19286v2
- Date: Tue, 27 May 2025 06:58:53 GMT
- Title: A Graph Perspective to Probe Structural Patterns of Knowledge in Large Language Models
- Authors: Utkarsh Sahu, Zhisheng Qi, Yongjia Lei, Ryan A. Rossi, Franck Dernoncourt, Nesreen K. Ahmed, Mahantesh M Halappanavar, Yao Ma, Yu Wang,
- Abstract summary: Large language models have been extensively studied as neural knowledge bases for their knowledge access, editability, reasoning, and explainability.<n>We quantify the knowledge of LLMs at both the triplet and entity levels, and analyze how it relates to graph structural properties such as node degree.
- Score: 52.52824699861226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have been extensively studied as neural knowledge bases for their knowledge access, editability, reasoning, and explainability. However, few works focus on the structural patterns of their knowledge. Motivated by this gap, we investigate these structural patterns from a graph perspective. We quantify the knowledge of LLMs at both the triplet and entity levels, and analyze how it relates to graph structural properties such as node degree. Furthermore, we uncover the knowledge homophily, where topologically close entities exhibit similar levels of knowledgeability, which further motivates us to develop graph machine learning models to estimate entity knowledge based on its local neighbors. This model further enables valuable knowledge checking by selecting triplets less known to LLMs. Empirical results show that using selected triplets for fine-tuning leads to superior performance.
Related papers
- Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection [5.164923314261229]
This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG.<n>Within the framework, the model leverages special tokens to textitactively determine whether knowledge retrieval is necessary.<n>The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge.
arXiv Detail & Related papers (2025-02-20T06:38:48Z) - Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery [10.573861741540853]
KG Structure as Prompt is a novel approach for integrating structural information from a knowledge graph, such as common neighbor nodes and metapaths, into prompt-based learning.
Experimental results on three types of biomedical and open-domain datasets under few-shot settings demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-07-26T14:07:00Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK) is a comprehensive framework for knowledge reasoning.
CoK includes methodologies for both dataset construction and model learning.
We conduct extensive experiments with KnowReason.
arXiv Detail & Related papers (2024-06-30T10:49:32Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
We propose a novel knowledge graph extension framework based on entity type recognition.
The framework aims to achieve high-quality knowledge extraction by aligning the schemas and entities across different knowledge graphs.
arXiv Detail & Related papers (2024-05-03T19:55:03Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.