Analytic Model for Molecules Under Collective Vibrational Strong
Coupling in Optical Cavities
- URL: http://arxiv.org/abs/2401.16374v1
- Date: Mon, 29 Jan 2024 18:13:43 GMT
- Title: Analytic Model for Molecules Under Collective Vibrational Strong
Coupling in Optical Cavities
- Authors: Jacob Horak, Dominik Sidler, Wei-Ming Huang, Michael Ruggenthaler and
Angel Rubio
- Abstract summary: We present a model system consisting of an ensemble of N molecules under vibrational strong coupling (VSC)
A priori no harmonic approximation is imposed for the inter-nuclear interactions.
We highlight that anharmonic intra-molecular interactions might become essential for the formation of local strong coupling effects.
- Score: 0.9824636175880032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analytical results are presented for a model system consisting of an ensemble
of N molecules under vibrational strong coupling (VSC). The single bare
molecular model is composed of one effective electron, which couples
harmonically to multiple nuclei. A priori no harmonic approximation is imposed
for the inter-nuclear interactions. Within the cavity Born-Oppenheimer
partitioning, i.e., when assuming classical nuclei and displacement field
coordinates, the dressed N-electron problem can be solved analytically in the
dilute limit. In more detail, we present a self-consistent solution of the
corresponding cavity-Hartree equations, which illustrates the relevance of the
non-perturbative treatment of electronic screening effects under VSC. We
exemplify our derivations for an ensemble of harmonic model CO2 molecules,
which shows that common simplifications can introduce non-physical effects
(e.g., a spurious coupling of the transverse field to the center-of-mass motion
for neutral atoms). In addition, our self-consistent solution reveals a simple
analytic expression for the cavity-induced red shift and the associated
refractive index, which can be interpreted as a polarizability-dependent
detuning of the cavity. Finally, we highlight that anharmonic intra-molecular
interactions might become essential for the formation of local strong coupling
effects within a molecular ensemble under collective VSC.
Related papers
- Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design [81.95343363178662]
atoms must maintain a minimum pairwise distance to avoid separation violations.
NucleusDiff models the interactions between atomic nuclei and their surrounding electron clouds by enforcing the distance constraint.
It reduces violation rate by up to 1000% and enhances binding affinity by up to 22.16%, surpassing state-of-the-art models for structure-based drug design.
arXiv Detail & Related papers (2024-09-16T08:42:46Z) - Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Collective Polaritonic Effects on Chemical Dynamics Suppressed by Disorder [0.0]
We present a powerful formalism, disordered collective dynamics using truncated equations (d-CUT-E)
Using d-CUT-E we conclude that strong coupling, as evaluated from linear optical spectra, can be a poor proxy for polariton chemistry.
arXiv Detail & Related papers (2023-08-07T23:45:14Z) - Cavity-Born-Oppenheimer Hartree-Fock Ansatz: Light-matter Properties of
Strongly Coupled Molecular Ensembles [0.0]
We present an ab-initio Hartree-Fock ansatz in the framework of the cavity Born-Oppenheimer approximation.
We study the collective effects in ensembles of strongly coupled diatomic hydrogen fluoride molecules.
arXiv Detail & Related papers (2023-07-05T11:20:24Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling [0.0]
We show that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit.
Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure.
arXiv Detail & Related papers (2023-06-09T16:18:51Z) - Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular
Ensemble under Vibrational Strong Coupling [0.0]
We numerically solve the Schr"odinger equation to study the cavity-induced quantum dynamics in an ensemble of molecules.
We show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength.
A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models.
arXiv Detail & Related papers (2023-01-10T16:58:57Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.