論文の概要: Two Stones Hit One Bird: Bilevel Positional Encoding for Better Length Extrapolation
- arxiv url: http://arxiv.org/abs/2401.16421v2
- Date: Mon, 17 Jun 2024 06:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 06:45:07.485318
- Title: Two Stones Hit One Bird: Bilevel Positional Encoding for Better Length Extrapolation
- Title(参考訳): 2つの石が1羽の鳥にぶつかる
- Authors: Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Liwei Wang, Jingjing Xu, Zhi Zhang, Hongxia Yang, Di He,
- Abstract要約: そこで我々は,バイレベル位置符号化と呼ばれる新しい位置符号化法を開発した。
倫理的分析は、この位置情報の絡み合いが学習をより効果的にすることを示している。
私たちのBiPEは、多種多様なテキストモダリティにおいて、幅広いタスクにわたって、より優れた長さの補間機能を持っています。
- 参考スコア(独自算出の注目度): 69.68831888599476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we leverage the intrinsic segmentation of language sequences and design a new positional encoding method called Bilevel Positional Encoding (BiPE). For each position, our BiPE blends an intra-segment encoding and an inter-segment encoding. The intra-segment encoding identifies the locations within a segment and helps the model capture the semantic information therein via absolute positional encoding. The inter-segment encoding specifies the segment index, models the relationships between segments, and aims to improve extrapolation capabilities via relative positional encoding. Theoretical analysis shows this disentanglement of positional information makes learning more effective. The empirical results also show that our BiPE has superior length extrapolation capabilities across a wide range of tasks in diverse text modalities.
- Abstract(参考訳): 本研究では,言語系列の固有セグメンテーションを活用し,Bilevel Positional Encoding (BiPE)と呼ばれる新しい位置符号化法を設計する。
それぞれの位置について、私たちのBiPEは、セグメント内エンコーディングとセグメント間エンコーディングをブレンドします。
セグメント内エンコーディングはセグメント内の位置を識別し、絶対的な位置エンコーディングによってモデルがそこにある意味情報をキャプチャするのを助ける。
セグメント間符号化はセグメントインデックスを規定し、セグメント間の関係をモデル化し、相対的な位置符号化による外挿能力の向上を目的としている。
理論的分析は、この位置情報の絡み合いが学習をより効果的にすることを示している。
実験結果から,BiPEは多種多様なテキストモダリティにおいて,幅広いタスクにまたがる長さの補間能力に優れていたことが示唆された。
関連論文リスト
- T2S-GPT: Dynamic Vector Quantization for Autoregressive Sign Language Production from Text [59.57676466961787]
本稿では,手話における情報密度に基づいて符号化長を調整できる新しい動的ベクトル量子化(DVA-VAE)モデルを提案する。
PHOENIX14Tデータセットを用いて実験を行い,提案手法の有効性を示した。
我々は,486時間の手話ビデオ,音声,文字起こしテキストを含むドイツ語手話データセットPHOENIX-Newsを提案する。
論文 参考訳(メタデータ) (2024-06-11T10:06:53Z) - U-Net v2: Rethinking the Skip Connections of U-Net for Medical Image Segmentation [14.450329809640422]
医用画像分割のための新しい堅牢で効率的なU-Net変種であるU-Net v2を紹介する。
セマンティックな情報を低レベルの機能に注入し、同時に細かな詳細で高レベルの機能を改善することを目的としている。
論文 参考訳(メタデータ) (2023-11-29T16:35:24Z) - Linguistically Motivated Sign Language Segmentation [51.06873383204105]
個々の記号へのセグメンテーションとフレーズへのセグメンテーションという2種類のセグメンテーションを考える。
本手法は手話コーパスで観察される言語的手がかりによって動機付けられている。
私たちは、主要なIOタグ付けスキームをBIOタグに置き換えて、継続的な署名を可能にします。
論文 参考訳(メタデータ) (2023-10-21T10:09:34Z) - The Locality and Symmetry of Positional Encodings [9.246374019271938]
我々はtextbfBi Masked Language Models (BERT-style) における位置符号化の体系的研究を行う。
PEのコア関数は、局所性と対称性という2つの共通性質を同定することによって明らかにする。
2つの新しい探索タスクを導入し、現在のPEの弱点を定量化する。
論文 参考訳(メタデータ) (2023-10-19T16:15:15Z) - CONFLATOR: Incorporating Switching Point based Rotatory Positional
Encodings for Code-Mixed Language Modeling [10.26356931263957]
コード混合言語のためのニューラル言語モデリングアプローチであるCONFLATORを紹介する。
回転位置エンコーディングと切替点情報とが最適な結果をもたらすことを示す。
ConFLATORは、コードミキシングされたヒンディー語と英語に基づく2つのタスクで最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-09-11T07:02:13Z) - Deeply Interleaved Two-Stream Encoder for Referring Video Segmentation [87.49579477873196]
まず,CNNに基づく視覚特徴とトランスフォーマーに基づく言語特徴を階層的に抽出する2ストリームエンコーダを設計する。
視覚言語相互誘導(VLMG)モジュールをエンコーダに複数回挿入し,多モード特徴の階層的および進行的融合を促進する。
フレーム間の時間的アライメントを促進するために,言語誘導型マルチスケール動的フィルタリング(LMDF)モジュールを提案する。
論文 参考訳(メタデータ) (2022-03-30T01:06:13Z) - Representation and Correlation Enhanced Encoder-Decoder Framework for
Scene Text Recognition [10.496558786568672]
本稿では,これらの欠陥に対処し,性能ボトルネックを解消するRepresentation and correlation Enhanced-Decoder Framework(RCEED)を提案する。
エンコーダモジュールでは、局所視覚特徴、グローバルコンテキスト特徴、位置情報を整列して融合させ、小型の包括的特徴マップを生成する。
デコーダモジュールでは,シーン特徴空間とテキスト特徴空間の相関性を高めるために2つの手法が用いられている。
論文 参考訳(メタデータ) (2021-06-13T10:36:56Z) - Rethinking Positional Encoding in Language Pre-training [111.2320727291926]
絶対的な位置符号化では、位置埋め込みと単語埋め込みに適用される付加操作が混合相関をもたらすことを示す。
我々はtextbfUntied textPositional textbfEncoding (T) を用いた textbfTransformer という新しい位置符号化手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T13:11:02Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
本稿では,ニューラルマシン翻訳タスクのためのBi-Decoder Augmented Network (BiDAN)を提案する。
各デコーダは入力されたテキストの表現を対応する言語に変換するため、2つの目的語と共同でトレーニングすることで、共有エンコーダは言語に依存しない意味空間を生成することができる。
論文 参考訳(メタデータ) (2020-01-14T02:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。