Evaluating Deep Networks for Detecting User Familiarity with VR from
Hand Interactions
- URL: http://arxiv.org/abs/2401.16443v1
- Date: Sat, 27 Jan 2024 19:15:24 GMT
- Title: Evaluating Deep Networks for Detecting User Familiarity with VR from
Hand Interactions
- Authors: Mingjun Li, Numan Zafar, Natasha Kholgade Banerjee, Sean Banerjee
- Abstract summary: We use a VR door as we envision it to the first point of entry to collaborative virtual spaces, such as meeting rooms, offices, or clinics.
While the user may not be familiar with VR, they would be familiar with the task of opening the door.
Using a pilot dataset consisting of 7 users familiar with VR, and 7 not familiar with VR, we acquire highest accuracy of 88.03% when 6 test users, 3 familiar and 3 not familiar, are evaluated with classifiers trained using data from the remaining 8 users.
- Score: 7.609875877250929
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As VR devices become more prevalent in the consumer space, VR applications
are likely to be increasingly used by users unfamiliar with VR. Detecting the
familiarity level of a user with VR as an interaction medium provides the
potential of providing on-demand training for acclimatization and prevents the
user from being burdened by the VR environment in accomplishing their tasks. In
this work, we present preliminary results of using deep classifiers to conduct
automatic detection of familiarity with VR by using hand tracking of the user
as they interact with a numeric passcode entry panel to unlock a VR door. We
use a VR door as we envision it to the first point of entry to collaborative
virtual spaces, such as meeting rooms, offices, or clinics. Users who are
unfamiliar with VR will have used their hands to open doors with passcode entry
panels in the real world. Thus, while the user may not be familiar with VR,
they would be familiar with the task of opening the door. Using a pilot dataset
consisting of 7 users familiar with VR, and 7 not familiar with VR, we acquire
highest accuracy of 88.03\% when 6 test users, 3 familiar and 3 not familiar,
are evaluated with classifiers trained using data from the remaining 8 users.
Our results indicate potential for using user movement data to detect
familiarity for the simple yet important task of secure passcode-based access.
Related papers
- mmSpyVR: Exploiting mmWave Radar for Penetrating Obstacles to Uncover Privacy Vulnerability of Virtual Reality [20.72439781800557]
This paper reveals a novel vulnerability in VR systems that allows attackers to capture VR privacy through obstacles.
We propose mmSpyVR, a novel attack on VR user's privacy via mmWave radar.
arXiv Detail & Related papers (2024-11-15T03:22:44Z) - Tremor Reduction for Accessible Ray Based Interaction in VR Applications [0.0]
Many traditional 2D interface interaction methods have been directly converted to work in a VR space with little alteration to the input mechanism.
In this paper we propose the use of a low pass filter, to normalize user input noise, alleviating fine motor requirements during ray-based interaction.
arXiv Detail & Related papers (2024-05-12T17:07:16Z) - An Empirical Study on Oculus Virtual Reality Applications: Security and
Privacy Perspectives [46.995904896724994]
This paper develops a security and privacy assessment tool, namely the VR-SP detector for VR apps.
Using the VR-SP detector, we conduct a comprehensive empirical study on 500 popular VR apps.
We find that a number of security vulnerabilities and privacy leaks widely exist in VR apps.
arXiv Detail & Related papers (2024-02-21T13:53:25Z) - Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data [49.68609500290361]
Recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan.
We present in this paper a state-of-the-art VR identification model that can convincingly bypass known defensive countermeasures.
arXiv Detail & Related papers (2023-11-09T01:34:22Z) - Can Virtual Reality Protect Users from Keystroke Inference Attacks? [23.587497604556823]
We show that despite assumptions of enhanced privacy, VR is unable to shield its users from side-channel attacks that steal private information.
This vulnerability arises from VR's greatest strength, its immersive and interactive nature.
arXiv Detail & Related papers (2023-10-24T21:19:38Z) - BehaVR: User Identification Based on VR Sensor Data [7.114684260471529]
We introduce BehaVR, a framework for collecting and analyzing data from all sensor groups collected by multiple apps running on a VR device.
We use BehaVR to collect data from real users that interact with 20 popular real-world apps.
We build machine learning models for user identification within and across apps, with features extracted from available sensor data.
arXiv Detail & Related papers (2023-08-14T17:43:42Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
We design a learning-based neural interface for natural and intuitive force inputs in VR/AR.
We show that our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration.
We envision our findings to push forward research towards more realistic physicality in future VR/AR.
arXiv Detail & Related papers (2022-10-03T20:51:25Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
Some of the most promising methods are gesture-based and do not require additional handheld hardware.
Recent work focused mostly on user preference and performance of the different locomotion techniques.
This work is investigated whether and how quickly users can adapt to a hand gesture-based locomotion system in VR.
arXiv Detail & Related papers (2022-06-16T10:44:16Z) - Wireless Edge-Empowered Metaverse: A Learning-Based Incentive Mechanism
for Virtual Reality [102.4151387131726]
We propose a learning-based Incentive Mechanism framework for VR services in the Metaverse.
First, we propose the quality of perception as the metric for VR users in the virtual world.
Second, for quick trading of VR services between VR users (i.e., buyers) and VR SPs (i.e., sellers), we design a double Dutch auction mechanism.
Third, for auction communication reduction, we design a deep reinforcement learning-based auctioneer to accelerate this auction process.
arXiv Detail & Related papers (2021-11-07T13:02:52Z) - Meta-Reinforcement Learning for Reliable Communication in THz/VLC
Wireless VR Networks [157.42035777757292]
The problem of enhancing the quality of virtual reality (VR) services is studied for an indoor terahertz (THz)/visible light communication (VLC) wireless network.
Small base stations (SBSs) transmit high-quality VR images to VR users over THz bands and light-emitting diodes (LEDs) provide accurate indoor positioning services.
To control the energy consumption of the studied THz/VLC wireless VR network, VLC access points (VAPs) must be selectively turned on.
arXiv Detail & Related papers (2021-01-29T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.