mmSpyVR: Exploiting mmWave Radar for Penetrating Obstacles to Uncover Privacy Vulnerability of Virtual Reality
- URL: http://arxiv.org/abs/2411.09914v1
- Date: Fri, 15 Nov 2024 03:22:44 GMT
- Title: mmSpyVR: Exploiting mmWave Radar for Penetrating Obstacles to Uncover Privacy Vulnerability of Virtual Reality
- Authors: Luoyu Mei, Ruofeng Liu, Zhimeng Yin, Qingchuan Zhao, Wenchao Jiang, Shuai Wang, Kangjie Lu, Tian He,
- Abstract summary: This paper reveals a novel vulnerability in VR systems that allows attackers to capture VR privacy through obstacles.
We propose mmSpyVR, a novel attack on VR user's privacy via mmWave radar.
- Score: 20.72439781800557
- License:
- Abstract: Virtual reality (VR), while enhancing user experiences, introduces significant privacy risks. This paper reveals a novel vulnerability in VR systems that allows attackers to capture VR privacy through obstacles utilizing millimeter-wave (mmWave) signals without physical intrusion and virtual connection with the VR devices. We propose mmSpyVR, a novel attack on VR user's privacy via mmWave radar. The mmSpyVR framework encompasses two main parts: (i) A transfer learning-based feature extraction model to achieve VR feature extraction from mmWave signal. (ii) An attention-based VR privacy spying module to spy VR privacy information from the extracted feature. The mmSpyVR demonstrates the capability to extract critical VR privacy from the mmWave signals that have penetrated through obstacles. We evaluate mmSpyVR through IRB-approved user studies. Across 22 participants engaged in four experimental scenes utilizing VR devices from three different manufacturers, our system achieves an application recognition accuracy of 98.5\% and keystroke recognition accuracy of 92.6\%. This newly discovered vulnerability has implications across various domains, such as cybersecurity, privacy protection, and VR technology development. We also engage with VR manufacturer Meta to discuss and explore potential mitigation strategies. Data and code are publicly available for scrutiny and research at https://github.com/luoyumei1-a/mmSpyVR/
Related papers
- Virtual Reality and Augmented Reality Security: A Reconnaissance and Vulnerability Assessment Approach [0.0]
Various industries have widely adopted Virtual Reality (VR) and Augmented Reality (AR) technologies to enhance productivity and user experiences.
This systematic literature review focuses on identifying devices used in AR and VR technologies and specifies the associated vulnerabilities.
arXiv Detail & Related papers (2024-07-22T18:51:59Z) - An Empirical Study on Oculus Virtual Reality Applications: Security and
Privacy Perspectives [46.995904896724994]
This paper develops a security and privacy assessment tool, namely the VR-SP detector for VR apps.
Using the VR-SP detector, we conduct a comprehensive empirical study on 500 popular VR apps.
We find that a number of security vulnerabilities and privacy leaks widely exist in VR apps.
arXiv Detail & Related papers (2024-02-21T13:53:25Z) - Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data [49.68609500290361]
Recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan.
We present in this paper a state-of-the-art VR identification model that can convincingly bypass known defensive countermeasures.
arXiv Detail & Related papers (2023-11-09T01:34:22Z) - Can Virtual Reality Protect Users from Keystroke Inference Attacks? [23.587497604556823]
We show that despite assumptions of enhanced privacy, VR is unable to shield its users from side-channel attacks that steal private information.
This vulnerability arises from VR's greatest strength, its immersive and interactive nature.
arXiv Detail & Related papers (2023-10-24T21:19:38Z) - Unique Identification of 50,000+ Virtual Reality Users from Head & Hand
Motion Data [58.27542320038834]
We show that a large number of real VR users can be uniquely and reliably identified across multiple sessions using just their head and hand motion.
After training a classification model on 5 minutes of data per person, a user can be uniquely identified amongst the entire pool of 50,000+ with 94.33% accuracy from 100 seconds of motion.
This work is the first to truly demonstrate the extent to which biomechanics may serve as a unique identifier in VR, on par with widely used biometrics such as facial or fingerprint recognition.
arXiv Detail & Related papers (2023-02-17T15:05:18Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
Some of the most promising methods are gesture-based and do not require additional handheld hardware.
Recent work focused mostly on user preference and performance of the different locomotion techniques.
This work is investigated whether and how quickly users can adapt to a hand gesture-based locomotion system in VR.
arXiv Detail & Related papers (2022-06-16T10:44:16Z) - Security and Privacy in Virtual Reality -- A Literature Survey [0.0]
We explore the state-of-the-art in VR privacy and security, we categorise potential issues and threats, and we analyse causes and effects of the identified threats.
We focus on the research previously conducted in the field of authentication in VR, as it stands as the most investigated area in the topic.
We also provide an overview of other interesting uses of VR in the field of cybersecurity, such as the use of VR to teach cybersecurity or evaluate the usability of security solutions.
arXiv Detail & Related papers (2022-04-30T08:45:09Z) - Wireless Edge-Empowered Metaverse: A Learning-Based Incentive Mechanism
for Virtual Reality [102.4151387131726]
We propose a learning-based Incentive Mechanism framework for VR services in the Metaverse.
First, we propose the quality of perception as the metric for VR users in the virtual world.
Second, for quick trading of VR services between VR users (i.e., buyers) and VR SPs (i.e., sellers), we design a double Dutch auction mechanism.
Third, for auction communication reduction, we design a deep reinforcement learning-based auctioneer to accelerate this auction process.
arXiv Detail & Related papers (2021-11-07T13:02:52Z) - Meta-Reinforcement Learning for Reliable Communication in THz/VLC
Wireless VR Networks [157.42035777757292]
The problem of enhancing the quality of virtual reality (VR) services is studied for an indoor terahertz (THz)/visible light communication (VLC) wireless network.
Small base stations (SBSs) transmit high-quality VR images to VR users over THz bands and light-emitting diodes (LEDs) provide accurate indoor positioning services.
To control the energy consumption of the studied THz/VLC wireless VR network, VLC access points (VAPs) must be selectively turned on.
arXiv Detail & Related papers (2021-01-29T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.